SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brum Wagner S.) srt2:(2024)"

Sökning: WFRF:(Brum Wagner S.) > (2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashton, Nicholas J., et al. (författare)
  • Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology
  • 2024
  • Ingår i: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportancePhosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. ObjectiveTo determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid beta (A beta) and longitudinal change across 3 selected cohorts. Design, Setting, and ParticipantsThis cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. ExposuresMagnetic resonance imaging, A beta positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (A beta 42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and MeasuresAccuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. ResultsThe study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated A beta (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal A beta pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in A beta-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and RelevanceThis study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
  •  
2.
  • Brum, Wagner S., et al. (författare)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
3.
  • Brum, Wagner S., et al. (författare)
  • Effect of Neprilysin Inhibition on Alzheimer Disease Plasma Biomarkers : A Secondary Analysis of a Randomized Clinical Trial
  • 2024
  • Ingår i: JAMA Neurology. - 2168-6149. ; 81:2, s. 197-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-β (Aβ) accumulation is critical in Alzheimer disease (AD), and neprilysin is involved in physiologically clearing Aβ. Concerns exist regarding long-term use of sacubitril/valsartan, a neprilysin inhibitor and angiotensin receptor blocker used for heart failure, and its potential to increase AD risk. We evaluated neprilysin inhibition’s effect on AD blood biomarkers in patients with coronary heart disease.
  •  
4.
  • Ferrari-Souza, Joao Pedro, et al. (författare)
  • Vascular risk burden is a key player in the early progression of Alzheimer's disease
  • 2024
  • Ingår i: NEUROBIOLOGY OF AGING. - 0197-4580 .- 1558-1497. ; 136, s. 88-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-beta 1-42 (A beta 1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF A beta 1-42or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
  •  
5.
  • Lantero Rodriguez, Juan, et al. (författare)
  • CSF p-tau205: a biomarker of tau pathology in Alzheimer's disease.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n=47), an unselected clinical cohort (n=212) and a research cohort well-characterized by fluid and imaging biomarkers (n=262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid(Aβ) and tau pathology positive (A+T+) cases (P<0.01). In A+cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205=0.67, rSp202=0.45) than Aβ-PET (rSp205=0.40, rSp202=0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P<0.01), whereas p-tau202 only increased in Braak V-VI (P<0.0001). Both showed stronger regional associations with tau-PET than with Aβ-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aβ and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2=69.7%; CSF p-tau202: R2=85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205=-0.36, rSp202=-0.33) and regionally, and correlated with cognition (rSp205=-0.38/-0.40, rSp202=-0.20/-0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.
  •  
6.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Plasma N-terminal containing tau fragments (NTA-tau): a biomarker of tau deposition in Alzheimer's Disease
  • 2024
  • Ingår i: MOLECULAR NEURODEGENERATION. - 1750-1326. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-beta (A beta) and tau pathology. However, because these biomarkers are strongly associated with the emergence of A beta pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. Methods NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. Results We demonstrate that plasma NTA-tau increases across the AD continuum, especially during late stages, and displays a moderate-to-strong association with tau-PET (beta = 0.54, p < 0.001) in A beta-positive participants, while weak with A beta-PET (beta = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R-2), while having very low contribution from A beta pathology measured with CSF A beta 42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R-2 = 0.27), steeper atrophy (R-2 >= 0.18) and steeper cognitive decline (R-2 >= 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in A beta positive cognitively unimpaired (beta(std) = 0.16) and impaired (beta(std) = 0.18) at baseline compared to their A beta negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R-2 = 0.21) and cognition (R-2 = 0.20). Conclusion Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful A beta removal.
  •  
7.
  • Nilsson, Johanna, 1993, et al. (författare)
  • Cerebrospinal fluid biomarker panel for synaptic dysfunction in a broad spectrum of neurodegenerative diseases.
  • 2024
  • Ingår i: Brain : a journal of neurology. - 1460-2156.
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic dysfunction and degeneration is likely the key pathophysiology for the progression of cognitive decline in various dementia disorders. Synaptic status can be monitored by measurement of synaptic proteins in cerebrospinal fluid (CSF). In the current study, the aim was to investigate and compare both known and new synaptic proteins as potential biomarkers of synaptic dysfunction, especially in the context of Alzheimer's disease (AD). Seventeen synaptic proteins were quantified in CSF using two different targeted mass spectrometry assays in the prospective Swedish BioFINDER-2 study. The study included 958 individuals, characterized as having mild cognitive impairment (MCI, n=205), AD dementia (n=149), and a spectrum of other neurodegenerative diseases (n=171), as well as cognitively unimpaired (CU, n=443). Synaptic protein levels were compared between diagnostic groups and their associations with cognitive decline and key neuroimaging measures (Aβ-PET, tau-PET, and cortical thickness) were assessed. Among the 17 synaptic proteins examined, 14 were specifically elevated in the AD continuum. SNAP-25, 14-3-3 zeta/delta, beta-synuclein, and neurogranin exhibited the highest discriminatory accuracy to differentiate AD dementia from controls (AUCs=0.81-0.93). SNAP-25 and 14-3-3 zeta/delta also had the strongest associations with tau-PET, Aβ-PET, and cortical thickness at baseline, and were associated with longitudinal changes in these imaging biomarkers (β(SE)=-0.056(0.0006) to 0.058(0.005), p<0.0001). SNAP-25 was the strongest predictor of progression to AD dementia in non-demented individuals (Hazard ratio=2.11). In contrast, neuronal pentraxins were decreased in all neurodegenerative diseases (except for Parkinson's disease), and NPTX2 showed the strongest associations with subsequent cognitive decline (longitudinal MMSE; β(SE)=0.57(0.1), p≤0.0001 and mPACC; β(SE)=0.095(0.024), p≤0.001) across the AD continuum. Interestingly, utilizing a ratio of the proteins that displayed higher levels in AD, such as SNAP-25 or 14-3-3 zeta/delta, over NPTX2 improved the biomarkers' association with cognitive decline and brain atrophy. We found that especially 14-3-3 zeta/delta and SNAP-25 are promising synaptic biomarkers of pathophysiological changes in AD. Neuronal pentraxins were identified as general indicators of neurodegeneration and associated with cognitive decline across various neurodegenerative dementias. The ratios of SNAP-25/NPTX2 and 14-3-3 zeta/delta/NPTX2 were found to best predict cognitive decline and brain atrophy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy