SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brun Annick) srt2:(2005-2009)"

Sökning: WFRF:(Brun Annick) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martin, Francis, et al. (författare)
  • The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 452:7183, s. 7-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycorrhizal symbioses -- the union of roots and soil fungi -- are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate, and montane forests all depend upon ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of 2 ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here, we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-million-base genome assembly contains ~ 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features most notably a battery of effector-type small secreted proteins (SSP) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific proteins likely play a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell walls, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus which enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem in order to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
  •  
2.
  • Morel, M, et al. (författare)
  • Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis
  • 2005
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240. ; 71:1, s. 382-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of ectomycorrhizal symbiosis leads to drastic changes in gene expression in both partners. However, little is known about the spatial regulation of symbiosis-regulated genes. Using cDNA array profiling, we compared the levels of expression of fungal genes corresponding to approximately 1,200 expressed sequenced tags in the ectomycorrhizal root tips (ECM) and the connected extraradical mycelium (EM) for the Paxillus involutus-Betuld pendula ectomycorrhizal association grown on peat in a microcosm system. Sixty-five unique genes were found to be differentially expressed in these two fungal compartments. In ECM, a gene coding for a putative phosphatidylserine decarboxylase (Psd) was up-regulated by 24-fold, while genes coding for urea (Dur3) and spermine (Tpo3) transporters were up-regulated 4.1- and 6.2-fold in EM. Moreover, urea was the major nitrogen compound found in EM by gas chromatography-mass spectrometry analysis. These results suggest that (i) there is a spatial difference in the patterns of fungal gene expression between ECM and EM, (ii) urea and polyamine transporters could facilitate the translocation of nitrogen compounds within the EM network, and (iii) fungal Psd may contribute to membrane remodeling during ectomycorrhiza formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy