SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brunsell Per) srt2:(2005-2009)"

Sökning: WFRF:(Brunsell Per) > (2005-2009)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergsåker, Henric, et al. (författare)
  • Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R
  • 2008
  • Ingår i: PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.
  •  
2.
  • Brunsell, Per, et al. (författare)
  • Active control of multiple resistive wall modes
  • 2005
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 47:12 B, s. B25-B36
  • Tidskriftsartikel (refereegranskat)abstract
    •  A two-dimensional array of saddle coils at M-c poloidal and N-c toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition vertical bar n - n'vertical bar = N-c. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc x Nc = 4 x 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc x Nc = 4 x 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7-8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.
  •  
3.
  • Brunsell, Per, et al. (författare)
  • Feedback stabilization of resistive wall modes in a reversed-field pinch
  • 2005
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 12:9, s. 092508-
  • Tidskriftsartikel (refereegranskat)abstract
    • An array of saddle coils having Nc =16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello, Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n, n′ that fulfill the condition ∫n- n′ ∫ = Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.
  •  
4.
  •  
5.
  • Brunsell, Per R., et al. (författare)
  • Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 46:11, s. 904-913
  • Tidskriftsartikel (refereegranskat)abstract
    • Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.
  •  
6.
  • Brunsell, Per, et al. (författare)
  • Resistive wall mode feedback control experiments in EXTRAP T2R
  • 2007
  • Ingår i: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts. - 9781622763344 ; , s. 544-547
  • Konferensbidrag (refereegranskat)abstract
    • Experiments in EXTRAP T2R on RWM stabilization using intelligent shell feedback with a P-controller showed that mode suppression improves with increasing gain up to the system stability limit. A PD-controller gives faster response and allows operation with higher gain. The PI-controller is useful for suppression of modes driven by external resonant field error. Best mode suppression was in the present study achieved with a PID-controller.
  •  
7.
  • Cavinato, M., et al. (författare)
  • Comparison of strategies and regulator design for active control of MHD modes
  • 2005
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 74:1-4, s. 549-553
  • Tidskriftsartikel (refereegranskat)abstract
    • A system of evenly spaced poloidal arrays of saddle coils was recently installed on the reversed field pinch device EXTRAP T2R to perform experiments on the active control of MHD modes. The implementation of different control strategies, such as "intelligent shell" and "mode control", was made possible by a flexible digital control system. After giving some results on the performances of the innermost coil current control loop, two versions of "mode control" recently tested on the machine are presented. In the "wise shell" approach, equilibrium related modes are ruled out and a systematic increase of the pulse length is obtained. In a second, more model based, approach, a mode estimator/controller is designed aiming at a full state feedback by including modes, which are not directly measurable due to the limited number of available real-time signals.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy