SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brutti Sergio) srt2:(2017)"

Sökning: WFRF:(Brutti Sergio) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agostini, Marco, 1987, et al. (författare)
  • A high-power and fast charging Li-ion battery with outstanding cycle-life
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical energy storage devices based on Li-ion cells currently power almost all electronic devices and power tools. The development of new Li-ion cell configurations by incorporating innovative functional components (electrode materials and electrolyte formulations) will allow to bring this technology beyond mobile electronics and to boost performance largely beyond the state-of-theart. Here we demonstrate a new full Li-ion cell constituted by a high-potential cathode material, i.e. LiNi0.5Mn1.5O4, a safe nanostructured anode material, i.e. TiO2, and a composite electrolyte made by a mixture of an ionic liquid suitable for high potential applications, i.e. Pyr(1),4PF6, a lithium salt, i.e. LiPF6, and standard organic carbonates. The final cell configuration is able to reversibly cycle lithium for thousands of cycles at 1000 mAg(-1) and a capacity retention of 65% at cycle 2000.
  •  
2.
  • Agostini, Marco, 1987, et al. (författare)
  • A mixed mechanochemical-ceramic solid-state synthesis as simple and cost effective route to high-performance LiNi0.5Mn1.5O4 spinels
  • 2017
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686. ; 235, s. 262-269
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of high potential materials as positive electrodes in high energy Li-ion batteries requires to develop scalable and smart synthetic routes. In the case of the LiNi0.5Mn1.5O4 (LNMO) spinel material, a successful preparation strategy must drive the phase formation in order to obtain structural, morphological and surface properties capable to boost performances in lithium cells and minimize the electrolyte degradation. Here we discuss a novel simple and easily scalable mechanochemical synthetic route, followed by a high temperature annealing in air, to prepare LMNO materials starting from oxides. A synergic doping with chromium and iron has been incorporated, resulting in the spontaneous segregation of a CrOx-rich surface layer. The effect of the annealing temperature on the physico-chemical properties of the LMNO material has been investigated as well as the effect on the performances in Licells.
  •  
3.
  • Agostini, Marco, 1987, et al. (författare)
  • Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration
  • 2017
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 10:17, s. 3490-3496
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium–sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g?1) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur–carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy