SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bryder David) srt2:(2015-2019)"

Sökning: WFRF:(Bryder David) > (2015-2019)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garrison, Brian S, et al. (författare)
  • ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 130:5, s. 619-624
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept that tumor-initiating cells can co-opt the self-renewal program of endogenous stem cells as a means of enforcing their unlimited proliferative potential is widely accepted, yet identification of specific factors that regulate self-renewal of normal and cancer stem cells remains limited. Using a comparative transcriptomic approach, we identify ZNF521/Zfp521 as a conserved hematopoietic stem cell (HSC)–enriched transcription factor in human and murine hematopoiesis whose function in HSC biology remains elusive. Competitive serial transplantation assays using Zfp521-deficient mice revealed that ZFP521 regulates HSC self-renewal and differentiation. In contrast, ectopic expression of ZFP521 in HSCs led to a robust maintenance of progenitor activity in vitro. Transcriptional analysis of human acute myeloid leukemia (AML) patient samples revealed that ZNF521 is highly and specifically upregulated in AMLs with MLL translocations. Using an MLL-AF9 murine leukemia model and serial transplantation studies, we show that ZFP521 is not required for leukemogenesis, although its absence leads to a significant delay in leukemia onset. Furthermore, knockdown of ZNF521 reduced proliferation in human leukemia cell lines possessing MLL-AF9 translocations. Taken together, these results identify ZNF521/ZFP521 as a critical regulator of HSC function, which facilitates MLL-AF9–mediated leukemic disease in mice.
  •  
2.
  • Bryder, David (författare)
  • Hematopoiesis at single-cell resolution
  • 2016
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 128:8, s. 1025-1026
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Canals, Isaac, et al. (författare)
  • Rapid and efficient induction of functional astrocytes from human pluripotent stem cells
  • 2018
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 15:9, s. 693-696
  • Tidskriftsartikel (refereegranskat)abstract
    • The derivation of astrocytes from human pluripotent stem cells is currently slow and inefficient. We demonstrate that overexpression of the transcription factors SOX9 and NFIB in human pluripotent stem cells rapidly and efficiently yields homogeneous populations of induced astrocytes. In our study these cells exhibited molecular and functional properties resembling those of adult human astrocytes and were deemed suitable for disease modeling. Our method provides new possibilities for the study of human astrocytes in health and disease.
  •  
4.
  • Davidsson, Josef, et al. (författare)
  • SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies
  • 2018
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 32:5, s. 1106-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline mutations in the SAMD9 and SAMD9L genes, located in tandem on chromosome 7, are associated with a clinical spectrum of disorders including the MIRAGE syndrome, ataxia–pancytopenia syndrome and myelodysplasia and leukemia syndrome with monosomy 7 syndrome. Germline gain-of-function mutations increase SAMD9 or SAMD9L’s normal antiproliferative effect. This causes pancytopenia and generally restricted growth and/or specific organ hypoplasia in non-hematopoietic tissues. In blood cells, additional somatic aberrations that reverse the germline mutation’s effect, and give rise to the clonal expansion of cells with reduced or no antiproliferative effect of SAMD9 or SAMD9L include complete or partial chromosome 7 loss or loss-of-function mutations in SAMD9 or SAMD9L. Furthermore, the complete or partial loss of chromosome 7q may cause myelodysplastic syndrome in these patients. SAMD9 mutations appear to associate with a more severe disease phenotype, including intrauterine growth restriction, developmental delay and hypoplasia of adrenal glands, testes, ovaries or thymus, and most reported patients died in infancy or early childhood due to infections, anemia and/or hemorrhages. SAMD9L mutations have been reported in a few families with balance problems and nystagmus due to cerebellar atrophy, and may lead to similar hematological disease as seen in SAMD9 mutation carriers, from early childhood to adult years. We review the clinical features of these syndromes, discuss the underlying biology, and interpret the genetic findings in some of the affected family members. We provide expert-based recommendations regarding diagnosis, follow-up, and treatment of mutation carriers.
  •  
5.
  • Dudenhöffer-Pfeifer, Monika, et al. (författare)
  • Immunoediting is not a primary transformation event in a murine model of MLL-ENL AML
  • 2018
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is firmly established that endogenous immunity can prevent cancer outgrowth, with a range of immunomodulatory strategies reaching clinical use, most studies on the topic have been restricted to solid cancers. This applies in particular to cancer initiation, where model constraints have precluded investigations of immunosurveillance and immunoediting during the multistep progression into acute myeloid leukemia (AML). Here, we used a mouse model where the chimeric transcription factor MLL-ENL can be conditionally activated in vivo as a leukemic “first-hit,” which is followed by spontaneous transformation into AML. We observed similar disease kinetics regardless of whether AML developed in WT or immunocompromised hosts, despite more permissive preleukemic environments in the latter. When assessing transformed AML cells from either primary immunocompetent or immunocompromised hosts, AML cells from all sources could be targets of endogenous immunity. Our data argue against immunoediting in response to selective pressure from endogenous immunity as a universal primary transformation event in AML.
  •  
6.
  • Elias, Harold K., et al. (författare)
  • Molecular mechanisms underlying lineage bias in aging hematopoiesis
  • 2017
  • Ingår i: Seminars in Hematology. - : Elsevier BV. - 0037-1963. ; 54:1, s. 4-11
  • Forskningsöversikt (refereegranskat)abstract
    • Although hematopoietic stem cells (HSCs) have traditionally been thought to possess the ability to give rise to all the mature cell types in the hematopoietic system, this conception of hematopoiesis was based on evaluation of hematopoietic output from large numbers of HSCs using transplantation models. More recent studies evaluating HSCs at the clonal or near-clonal level, both in transplantation studies and during in situ hematopoiesis, have established that individual HSCs can exhibit lineage bias, giving rise to myeloid-biased, lymphoid-biased, or more balanced differentiation, with the proportion of myeloid-biased HSCs increasing with age. This age-associated shift in lineage potential is associated with decreased cellular immunity and increased incidence of diseases with prominent inflammatory components including atherosclerosis, autoimmunity, neurodegenerative disease, and carcinogenesis. Understanding the molecular mechanisms that regulate this shift in linage bias therefore represents an important area of investigation in numerous human diseases. In this review, we summarize our current understanding of the cell-intrinsic (autonomous) and cell-extrinsic factors that regulate HSC lineage fate bias during aging. In addition, we have attempted to bring attention to important caveats and unanswered questions related to the issue of HSC lineage bias to encourage explorations of these important lines of inquiry. Ultimately, we expect a comprehensive understanding of HSC lineage bias during aging to have important implications for human health, since strategies to alter lineage bias in old HSCs not only has the potential to restore immune function in the elderly, but also to reduce the incidence of inflammation-associated diseases, many for which there is a current unmet need for novel and more effective treatments.
  •  
7.
  • Jaako, Pekka, et al. (författare)
  • Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.
  • 2015
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 29:11, s. 2221-2229
  • Tidskriftsartikel (refereegranskat)abstract
    • Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of Mdm2, the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.Leukemia accepted article preview online, 19 May 2015. doi:10.1038/leu.2015.128.
  •  
8.
  • Jensen, Christina T, et al. (författare)
  • Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis
  • 2018
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 215:7, s. 1947-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.
  •  
9.
  • Komorowska, Karolina, et al. (författare)
  • Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 21:12, s. 3514-3523
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor hepatic leukemia factor (HLF) is strongly expressed in hematopoietic stem cells (HSCs) and is thought to influence both HSC self-renewal and leukemogenesis. However, the physiological role of HLF in hematopoiesis and HSC function is unclear. Here, we report that mice lacking Hlf are viable with essentially normal hematopoietic parameters, including an intact HSC pool during steady-state hematopoiesis. In contrast, when challenged through transplantation, Hlf-deficient HSCs showed an impaired ability to reconstitute hematopoiesis and became gradually exhausted upon serial transplantation. Transcriptional profiling of Hlf-deficient HSCs revealed changes associated with enhanced cellular activation, and cell-cycle analysis demonstrated a significant reduction of quiescent HSCs. Accordingly, toxic insults targeting dividing cells completely eradicated the HSC pool in Hlf-deficient mice. In summary, our findings point to HLF as a critical regulator of HSC quiescence and as an essential factor for maintaining the HSC pool during regeneration. Komorowska et al. report that the transcription factor HLF is required to maintain hematopoietic stem cell (HSC) function during regeneration. Moreover, Hlf-deficient HSCs are less quiescent. In accordance with this, toxic insults targeting dividing cells completely eradicate the HSC pool in Hlf-deficient mice.
  •  
10.
  • Kristiansen, Trine A., et al. (författare)
  • Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level
  • 2016
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613. ; 45:2, s. 346-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate that the developmental decline in regenerative potential represents a reversible HSC state.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy