SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buchert T.) srt2:(2005-2009)"

Sökning: WFRF:(Buchert T.) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lunde, J., et al. (författare)
  • Ion-dispersion and rapid electron fluctuations in the cusp : a case study
  • 2008
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 26:8, s. 2485-2502
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from co-ordinated measurements with the low altitude REIMEI satellite and the ESR (EISCAT Svalbard Radar), together with other ground-based instruments carried out in February 2006. The results mainly relate to the dayside cusp where clear signatures of so-called ion-dispersion are seen in the satellite data. The cusp ion-dispersion is important for helping to understand the temporal and spatial structure of magnetopause reconnection. Whenever a satellite crosses boundaries of flux tubes or convection cells, cusp structures such as ion-dispersion will always be encountered. In our case we observed 3 distinct steps in the ion energy, but it includes at least 2 more steps as well, which we interpret as temporal features in relation to pulsed reconnection at the magnetopause. In addition, fast variations of the electron flux and energy occurring during these events have been studied in detail. The variations of the electron population, if interpreted as structures crossed by the REIMEI satellite, would map near the magnetopause to similar features as observed previously with the Cluster satellites. These were explained as Alfven waves originating from an X-line of magnetic reconnection.
  •  
2.
  • Amm, O., et al. (författare)
  • Towards understanding the electrodynamics of the 3-dimensional high-latitude ionosphere : present and future
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:12, s. 3913-3932
  • Forskningsöversikt (refereegranskat)abstract
    • Traditionally, due to observational constraints, ionospheric modelling and data analysis techniques have been devised either in one dimension (e. g. along a single radar beam), or in two dimensions (e. g. over a network of magnetometers). With new upcoming missions like the Swarm ionospheric multi-satellite project, or the EISCAT 3-D project, the time has come to take into account variations in all three dimensions simultaneously, as they occur in the real ionosphere. The link between ionospheric electrodynamics and the neutral atmosphere circulation which has gained increasing interest in the recent years also intrinsically requires a truly 3-dimensional (3-D) description. In this paper, we identify five major science questions that need to be addressed by 3-D ionospheric modelling and data analysis. We briefly review what proceedings in the young field of 3-D ionospheric electrodynamics have been made in the past to address these selected question, and we outline how these issues can be addressed in the future with additional observations and/or improved data analysis and simulation techniques. Throughout the paper, we limit the discussion to high-latitude and mesoscale ionospheric electrodynamics, and to directly data-driven (not statistical) data analysis.
  •  
3.
  • Buchert, Stephan, et al. (författare)
  • The Pedersen current carried by electrons : a non-linear response of the ionosphere to magnetospheric forcing
  • 2008
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 26:9, s. 2837-2844
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the EISCAT Svalbard radar show that electron temperatures T-e in the cusp electrojet reach up to about 4000 K. The heat is tapped and converted from plasma convection in the near Earth space by a Pedersen current that is carried by electrons due to the presence of irregularities and their demagnetising effect. The heat is transfered to the neutral gas by collisions. In order to enhance T-e to such high temperatures the maximally possible dissipation at 50% demagnetisation must nearly be reached. The effective Pedersen conductances are found to be enhanced by up to 60% compared to classical values. Conductivities and conductances respond significantly to variations of the electric field strength E, and "Ohm's law" for the ionosphere becomes non-linear for large E.
  •  
4.
  • Kullen, A., et al. (författare)
  • Plasma transport along discrete auroral arcs and its contribution to the ionospheric plasma convection
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:11, s. 3279-3293
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of intense high-altitude electric field (E-field) peaks for large-scale plasma convection is investigated with the help of Cluster E-field, B-field and density data. The study covers 32 E-field events between 4 and 7 R-E geocentric distance, with E-field magnitudes in the range 500 1000 mV/m when mapped to ionospheric altitude. We focus on E-field structures above the ionosphere that are typically coupled to discrete auroral arcs and their return current region. Connected to such E-field peaks are rapid plasma flows directed along the discrete arcs in opposite directions on each side of the arc. Nearly all the E-field events occur during active times. A strong dependence on different substorm phases is found: a majority of intense E-field events appearing during substorm expansion or maximum phase are located on the night-side oval, while most recovery events occur on the dusk-to-dayside part of the oval. For most expansion and maximum phase cases, the average background plasma flow is in the sunward direction. For a majority of recovery events, the flow is in the anti-sunward direction. The net plasma flux connected to a strong E-field peak is in two thirds of the cases in the same direction as the background plasma flow. However, in only one third of the cases the strong flux caused by an E-field peak makes an important contribution to the plasma transport within the boundary plasma sheet. For a majority of events, the area covered by rapid plasma flows above discrete arcs is too small to have an effect on the global convection. This questions the role of discrete auroral arcs as major driver of plasma convection.
  •  
5.
  • Marklund, Göran T., et al. (författare)
  • Dynamics and characteristics of electric-field structures in the auroral return current region observed by Cluster
  • 2006
  • Ingår i: Physica Scripta. - 0031-8949 .- 1402-4896. ; T122, s. 34-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The temporal evolution and other characteristics of intense quasi- static electric fields in the return current region are discussed using Cluster observations. A narrow- scale, divergent electric field, the high- altitude signature of a positive U- shaped potential structure, was observed at the poleward edge of the central plasma sheet, close to magnetic midnight at a geocentric distance of about 4.2 Earth radii. Its acceleration potential increased from less than 1 to 3 kV on a 100 s timescale, similar to the formation time for ionospheric plasma density holes, and consistent with previous results for this kind of structure. In the adjacent upward current region, an energy decrease in inverted- V ions was observed some minutes prior to this. The inverted- V potential decrease was roughly equal to the subsequent perpendicular potential increase in the return current region, suggesting that a potential redistribution took place between the two adjacent current branches. Other characteristics of this and three other return current structures are summarized, to illustrate both common and different features of these. The structures are characterized by ( all values have been mapped to the ionospheric level) peak electric- field magnitudes of approximate to 1Vm(-1), bipolar or unipolar profiles, occurrence at plasma boundaries associated with plasma density gradients, perpendicular scale sizes of approximate to 10 km, downward field-aligned currents of approximate to 10 mu A m(-2), and upward electron beams with characteristic energies of a few hundred to a few thousand eV. The bipolar and unipolar electric- field profiles are proposed to reflect whether plasma populations, dense enough to support upward field-aligned currents (by which the return current can close) exist on both sides, or on one side only of the boundary.
  •  
6.
  • Ogawa, Y., et al. (författare)
  • Coordinated EISCAT Svalbard radar and Reimei satellite observations of ion upflows and suprathermal ions
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A5, s. A05306-
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between bulk ion upflows and suprathermal ions was investigated using data simultaneously obtained from the European Incoherent Scatter (EISCAT) Svalbard radar (ESR) and the Reimei satellite. Simultaneous observations were conducted in November 2005 and August 2006, and 14 conjunction data sets have been obtained at approximately 630 km in the dayside ionosphere. Suprathermal ions with energies of a few eV were present in the dayside cusp region, and the ion velocity distribution changed from an isotropic Maxwellian near the cusp region to tail heating at energies above a few eV in the cusp region. The velocity distribution of the suprathermal ions has a peak perpendicular or oblique to the geomagnetic field, and the temperature of the suprathermal ions was 0.9-1.4 eV. An increase in the phase space density (PSD) of the suprathermal ions, measured with the Reimei, was correlated with bulk ion upflow observed at the same altitude using EISCAT, and with the energy flux of precipitating electrons with energies of 50-500 eV. The PSD also has a good correlation with the electron temperature, which was increased by precipitation, but not with the ion temperature (0.1-0.3 eV) at the same altitude measured with EISCAT. These results suggest that plasma waves such as broadband extremely low frequency (BBELF) wavefields associated with precipitation are connected to the bulk ion upflows in the cusp and effectively cause the heating of suprathermal ions. The heating of suprathermal ions disagrees with anisotropic heating due to O+-O resonant charge exchange.
  •  
7.
  • Ogawa, Y., et al. (författare)
  • On the source of the polar wind in the polar topside ionosphere : First results from the EISCAT Svalbard radar
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:24, s. L24103-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present quantitative radar observations of both hydrogen ion (H+) and oxygen ion (O+) upflow in the topside polar ionosphere using measurements that were recently carried out with the EISCAT Svalbard Radar and the Reimei satellite. H+ upflow was clearly observed equatorward of the cusp above 500 km altitude. Within the cusp the H+ density was very low, and the upflow was dominated by O+ ions, but on closed field lines the H+ became the larger contributor to the upward flux above about 550 km. The total flux seemed to be conserved, and so below 550 km altitude O+ (with a small upward velocity of similar to 50 m s(-1)) appeared to determine the upward flux which was then maintained by H+! in the topside ionosphere. We also found that the H+ density in the topside polar ionosphere was several times higher than current predictions of ionospheric models like IRI2001.
  •  
8.
  • Rosenqvist, Lisa, et al. (författare)
  • Modulated reconnection rate and energy conversion at the magnetopause under steady IMF conditions
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the multi-spacecraft mission Cluster to make observational estimates of the local energy conversion across the dayside high-latitude magnetopause. The energy conversion is estimated during eleven complete magnetopause crossings under steady south-dawnward interplanetary magnetic field (IMF). We describe a new method to determine the reconnection rate from the magnitude of the local energy conversion. The reconnection rate as well as the energy conversion varies during the course of the eleven crossings and is typically much higher for the outbound crossings. This supports the previous interpretation that reconnection is continuous but its rate is modulated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy