SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buijs J) srt2:(2005-2009)"

Sökning: WFRF:(Buijs J) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  • Buijs, J, et al. (författare)
  • SPR-MS in Functional Proteomics
  • 2005
  • Ingår i: Briefings in Functional Genomics and Proteomics. - : Oxford University Press (OUP). - 1473-9550 .- 1477-4062. ; 4:1, s. 39-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The mapping of protein networks and the establishment of the functional relationships between expressed proteins and their effects on cellular processes represents a great challenge for functional or interaction proteomics. The combination of surface plasmon resonance (SPR)-based technology with mass spectrometry (MS) has created a unique analytical tool for functional proteomics investigations. Proteins are affinity purified, quantified and characterised in terms of their interactions, while the mass spectrometer identifies and structurally characterises the biomolecules. Recent developments have led to a closer integration of these key technologies, providing a combined approach which enables identification of proteins selected on the basis of their functional binding criteria. In addition to a historical overview of this field, some recent detailed examples of combined SPR-MS approaches will be reviewed in a number of key application areas, including ligand fishing, peptide sequence and post-translational modification analysis by SPR-MS/MS and enzyme inhibitor screening.
  •  
4.
  • Larsericsdotter, Helén, et al. (författare)
  • Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications : How to avoid and utilize nonspecific adsorption
  • 2006
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 6:8, s. 2355-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • A great challenge in functional or interaction proteomics is to map protein networks and establish a functional relationship between expressed proteins and their effects on cellular processes. These cellular processes can be studied by characterizing binding partners to a "bait" protein against a complex background of other molecules present in cells, tissues, or biological fluids. This so-called ligand fishing process can be performed by combining surface plasmon resonance biosensors with MS. This combination generates a unique and automated method to quantify and characterize biomolecular interactions, and identify the interaction partners. A general problem in chip-based affinity separation systems is the large surface-to-volume ratio of the fluidic system. Extreme care, therefore, is required to avoid nonspecific adsorption, resulting in losses of the target protein and carry-over during the affinity purification process, which may lead to unwanted signals in the final MS analysis and a reduction in sensitivity. In this study, carry-over of protein and low-molecular weight substances has been investigated systematically and cleaning strategies are presented. Furthermore, it is demonstrated that by the introduction of colloidal particles as a capturing and transporting agent, the recovery yield of the affinity-purified ligand could be improved nearly twofold.
  •  
5.
  • Larseriksdotter, Helén, et al. (författare)
  • Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications
  • 2006
  • Ingår i: Proteomics. - 1615-9853. ; 6:8, s. 2355-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • A great challenge in functional or interaction proteomics is to map protein networks and establish a functional relationship between expressed proteins and their effects on cellular processes. These cellular processes can be studied by characterizing binding partners to a "bait" protein against a complex background of other molecules present in cells, tissues, or biological fluids. This so-called ligand fishing process can be performed by combining surface plasmon resonance biosensors with MS. This combination generates a unique and automated method to quantify and characterize biomolecular interactions, and identify the interaction partners. A general problem in chip-based affinity separation systems is the large surface-to-volume ratio of the fluidic system. Extreme care, therefore, is required to avoid nonspecific adsorption, resulting in losses of the target protein and carry-over during the affinity purification process, which may lead to unwanted signals in the final MS analysis and a reduction in sensitivity. In this study, carry-over of protein and low-molecular weight substances has been investigated systematically and cleaning strategies are presented. Furthermore, it is demonstrated that by the introduction of colloidal particles as a capturing and transporting agent, the recovery yield of the affinity-purified ligand could be improved nearly twofold.
  •  
6.
  •  
7.
  •  
8.
  • Norde, Willem, et al. (författare)
  • Adsorption of globular proteins
  • 2005
  • Ingår i: Fundamentals of Interface and Colloid Science. - : Academic Press. - 0124605303
  • Bokkapitel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy