SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bunikis Ignas) srt2:(2015-2019)"

Sökning: WFRF:(Bunikis Ignas) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schueler, Wolfgang, et al. (författare)
  • Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.
  •  
2.
  • Ameur, Adam, et al. (författare)
  • De Novo Assembly of Two Swedish Genomes Reveals Missing Segments from the Human GRCh38 Reference and Improves Variant Calling of Population-Scale Sequencing Data
  • 2018
  • Ingår i: Genes. - : MDPI AG. - 2073-4425 .- 2073-4425. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.
  •  
3.
  • Andrade, Pedro, et al. (författare)
  • Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:12, s. 5633-5642
  • Tidskriftsartikel (refereegranskat)abstract
    • Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.
  •  
4.
  • Christmas, Matthew J, et al. (författare)
  • Chromosomal inversions associated with environmental adaptation in honeybees
  • 2019
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 28:6, s. 1358-1374
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal inversions can facilitate local adaptation in the presence of gene flow by suppressing recombination between well-adapted native haplotypes and poorly adapted migrant haplotypes. East African mountain populations of the honeybee Apis mellifera are highly divergent from neighbouring lowland populations at two extended regions in the genome, despite high similarity in the rest of the genome, suggesting that these genomic regions harbour inversions governing local adaptation. Here, we utilize a new highly contiguous assembly of the honeybee genome to characterize these regions. Using whole-genome sequencing data from 55 highland and lowland bees, we find that the highland haplotypes at both regions are present at high frequencies in three independent highland populations but extremely rare elsewhere. The boundaries of both divergent regions are characterized by regions of high homology with each other positioned in opposite orientations and contain highly repetitive, long inverted repeats with homology to transposable elements. These regions are likely to represent inversion breakpoints that participate in nonallelic homologous recombination. Using long-read data, we confirm that the lowland samples are contiguous across breakpoint regions. We do not find evidence for disruption of functional sequence by these breakpoints, which suggests that the inversions are likely maintained due to their allelic content conferring local adaptation in highland environments. Finally, we identify a third divergent genomic region, which contains highly divergent segregating haplotypes that also may contain inversion variants under selection. The results add to a growing body of evidence indicating the importance of chromosomal inversions in local adaptation.
  •  
5.
  • Martijn, Joran, et al. (författare)
  • Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon
  • 2019
  • Ingår i: Environmental Microbiology. - : John Wiley & Sons. - 1462-2912 .- 1462-2920. ; 21:7, s. 2485-2498
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions and to discover novel lineages. However, traditional short amplicons often do not contain enough information to confidently resolve their phylogeny. Here we present a cost-effective protocol that amplifies a large part of the rRNA operon and sequences the amplicons with PacBio technology. We tested our method on a mock community and developed a read-curation pipeline that reduces the overall read error rate to 0.18%. Applying our method on four environmental samples, we captured near full-length rRNA operon amplicons from a large diversity of prokaryotes. The method operated at moderately high-throughput (22286-37,850 raw ccs reads) and generated a large amount of putative novel archaeal 23S rRNA gene sequences compared to the archaeal SILVA database. These long amplicons allowed for higher resolution during taxonomic classification by means of long (similar to 1000 bp) 16S rRNA gene fragments and for substantially more confident phylogenies by means of combined near full-length 16S and 23S rRNA gene sequences, compared to shorter traditional amplicons (250 bp of the 16S rRNA gene). We recommend our method to those who wish to cost-effectively and confidently estimate the phylogenetic diversity of prokaryotes in environmental samples at high throughput.
  •  
6.
  • Olsen, Remi-Andre, et al. (författare)
  • De novo assembly of Dekkera bruxellensis : a multi technology approach using short and long-read sequencing and optical mapping
  • 2015
  • Ingår i: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome. Methods: In this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work. Results: We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.
  •  
7.
  • Pettersson, Mats, et al. (författare)
  • A chromosome-level assembly of the Atlantic herring : detection of a supergene and other signals of selection
  • 2019
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory Press (CSHL). - 1088-9051 .- 1549-5469. ; 29:11, s. 1919-1928
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic herring is a model species for exploring the genetic basis for ecological adaptation, due to its huge population size and extremely low genetic differentiation at selectively neutral loci. However, such studies have so far been hampered because of a highly fragmented genome assembly. Here, we deliver a chromosome-level genome assembly based on a hybrid approach combining a de novo Pacific Biosciences (PacBio) assembly with Hi-C-supported scaffolding. The assembly comprises 26 autosomes with sizes ranging from 12.4 to 33.1 Mb and a total size, in chromosomes, of 726 Mb, which has been corroborated by a high-resolution linkage map. A comparison between the herring genome assembly with other high-quality assemblies from bony fishes revealed few inter-chromosomal but frequent intra-chromosomal rearrangements. The improved assembly facilitates analysis of previously intractable large-scale structural variation, allowing, for example, the detection of a 7.8-Mb inversion on Chromosome 12 underlying ecological adaptation. This supergene shows strong genetic differentiation between populations. The chromosome-based assembly also markedly improves the interpretation of previously detected signals of selection, allowing us to reveal hundreds of independent loci associated with ecological adaptation.
  •  
8.
  • Wallberg, Andreas, et al. (författare)
  • A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds
  • 2019
  • Ingår i: BMC Genomics. - : BMC. - 1471-2164. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map.ResultsEach of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor >98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features.ConclusionsThe improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.
  •  
9.
  • Weissensteiner, Matthias H., et al. (författare)
  • Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications
  • 2017
  • Ingår i: Genome Research. - : COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT. - 1088-9051 .- 1549-5469. ; 27:5, s. 697-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate and contiguous genome assembly is key to a comprehensive understanding of the processes shaping genomic diversity and evolution. Yet, it is frequently constrained by constitutive heterochromatin, usually characterized by highly repetitive DNA. As a key feature of genome architecture associated with centromeric and subtelomeric regions, it locally influences meiotic recombination. In this study, we assess the impact of large tandem repeat arrays on the recombination rate landscape in an avian speciation model, the Eurasian crow. We assembled two high-quality genome references using single-molecule real-time sequencing (long-read assembly [LR]) and single-molecule optical maps (optical map assembly [ OM]). A three-way comparison including the published short-read assembly (SR) constructed for the same individual allowed assessing assembly properties and pinpointing misassemblies. By combining information from all three assemblies, we characterized 36 previously unidentified large repetitive regions in the proximity of sequence assembly breakpoints, the majority of which contained complex arrays of a 14-kb satellite repeat or its 1.2-kb subunit. Using whole-genome population resequencing data, we estimated the population-scaled recombination rate (rho) and found it to be significantly reduced in these regions. These findings are consistent with an effect of low recombination in regions adjacent to centromeric or subtelomeric heterochromatin and add to our understanding of the processes generating widespread heterogeneity in genetic diversity and differentiation along the genome. By combining three different technologies, our results highlight the importance of adding a layer of information on genome structure that is inaccessible to each approach independently.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy