SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burgess Thomas) srt2:(2015-2019)"

Sökning: WFRF:(Burgess Thomas) > (2015-2019)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Altenburger, R., et al. (författare)
  • Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4715 .- 2190-4707. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic diffuse emissions and point sources. Here, we integrate the experience of the international EU-funded project SOLUTIONS to shift the focus of water monitoring from a few legacy chemicals to complex chemical mixtures, and to identify relevant drivers of toxic effects. Monitoring serves a range of purposes, from control of chemical and ecological status compliance to safeguarding specific water uses, such as drinking water abstraction. Various water sampling techniques, chemical target, suspect and non-target analyses as well as an array of in vitro, in vivo and in situ bioanalytical methods were advanced to improve monitoring of water contamination. Major improvements for broader applicability include tailored sampling techniques, screening and identification techniques for a broader and more diverse set of chemicals, higher detection sensitivity, standardized protocols for chemical, toxicological, and ecological assessments combined with systematic evidence evaluation techniques. No single method or combination of methods is able to meet all divergent monitoring purposes. Current monitoring approaches tend to emphasize either targeted exposure or effect detection. Here, we argue that, irrespective of the specific purpose, assessment of monitoring results would benefit substantially from obtaining and linking information on the occurrence of both chemicals and potentially adverse biological effects. In this paper, we specify the information required to: (1) identify relevant contaminants, (2) assess the impact of contamination in aquatic ecosystems, or (3) quantify cause-effect relationships between contaminants and adverse effects. Specific strategies to link chemical and bioanalytical information are outlined for each of these distinct goals. These strategies have been developed and explored using case studies in the Danube and Rhine river basins as well as for rivers of the Iberian Peninsula. Current water quality assessment suffers from biases resulting from differences in approaches and associated uncertainty analyses. While exposure approaches tend to ignore data gaps (i.e., missing contaminants), effect-based approaches penalize data gaps with increased uncertainty factors. This integrated work suggests systematic ways to deal with mixture exposures and combined effects in a more balanced way, and thus provides guidance for future tailored environmental monitoring.
  •  
5.
  •  
6.
  •  
7.
  • Brack, W., et al. (författare)
  • Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4707 .- 2190-4715. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To meet the United Nations (UN) sustainable development goals and the European Union (EU) strategy for a non-toxic environment, water resources and ecosystems management require cost-efficient solutions for prevailing complex contamination and multiple stressor exposures. For the protection of water resources under global change conditions, specific research needs for prediction, monitoring, assessment and abatement of multiple stressors emerge with respect to maintaining human needs, biodiversity, and ecosystem services. Collaborative European research seems an ideal instrument to mobilize the required transdisciplinary scientific support and tackle the large-scale dimension and develop options required for implementation of European policies. Calls for research on minimizing society's chemical footprints in the water-food-energy-security nexus are required. European research should be complemented with targeted national scientific funding to address specific transformation pathways and support the evaluation, demonstration and implementation of novel approaches on regional scales. The foreseeable pressure developments due to demographic, economic and climate changes require solution-oriented thinking, focusing on the assessment of sustainable abatement options and transformation pathways rather than on status evaluation. Stakeholder involvement is a key success factor in collaborative projects as it allows capturing added value, to address other levels of complexity, and find smarter solutions by synthesizing scientific evidence, integrating governance issues, and addressing transition pathways. This increases the chances of closing the value chain by implementing novel solutions. For the water quality topic, the interacting European collaborative projects SOLUTIONS, MARS and GLOBAQUA and the NORMAN network provide best practice examples for successful applied collaborative research including multi-stakeholder involvement. They provided innovative conceptual, modelling and instrumental options for future monitoring and management of chemical mixtures and multiple stressors in European water resources. Advancement of EU water framework directive-related policies has therefore become an option. Bt Aachen Biol, Aachen, Germany.
  •  
8.
  • Brown, A. G. A., et al. (författare)
  • Gaia Data Release 1 Summary of the astrometric, photometric, and survey properties
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of similar to 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr(-1) for the proper motions. A systematic component of similar to 0.3 mas should be added to the parallax uncertainties. For the subset of similar to 94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr(-1). For the secondary astrometric data set, the typical uncertainty of the positions is similar to 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to similar to 0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.
  •  
9.
  • Clementini, G., et al. (författare)
  • Testing parallaxes with local Cepheids and RR Lyrae stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the HIPPARCOS and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (MV-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS.Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with sigma(omega)/omega < 0 : 5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with sigma(omega)/omega 0 : 5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with sigma(omega)/omega < 0 : 5). The new relations were computed using multi- band (V; I; J; K-s) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL; PW; PLZ, and MV [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods.Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the HIPPARCOS measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive.Conclusions. TGAS parallaxes bring a significant added value to the previous HIPPARCOS estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy