SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burra Dharani) srt2:(2016)"

Sökning: WFRF:(Burra Dharani) > (2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burra, Dharani (författare)
  • Defence related molecular signalling in Potato : new perspectives from “- Omics”
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Potato production is hampered by several pathogens and is subjected to intense chemical based disease control, use of which also has undesirable consequences. Resistance breeding programs have also shown limited success. Hence, there is a need to develop durable disease resistance. Omics-techniques enable new layers of knowledge regarding molecules and their interactions mediating defence, which can contribute to identification of durable resistance sources. A novel network-based approach was used to improve the existing annotation of gene probes on the genome based microarray. Approximately 8000 unannotated probes received a new annotation. This improved annotation was used to assess genome wide changes in transcripts and proteins in response to treatments with resistance inducers, β- amino butyric acid (BABA) and Phosphite based salt (Phi). Five thousand transcripts were significantly regulated 48 hours after 10mM BABA treatment while one was regulated with 1mM BABA. In coherence, 10 mM BABA but not 1 mM induced protection to the hemibiotroph Phytophthora infestans. No transcript was significantly regulated 48 hours after Phi treatment. Time course analysis revealed that Phi exerts a transient effect, as significant transcriptomic changes were observed only 3, 6 and 11 hours after treatment. In contrast, plants showed resistance to P. infestans even at 120 hours after Phi treatment. Phi and BABA dependent “Induced state” is not restricted to transcripts related to plant defence, as transcripts related to abiotic stress and primary metabolism were altered, while biotic stress and cell wall related proteins also increased in abundance. Furthermore, an in vitro based blackleg disease screening assay was developed to investigate Potato – Dickeya solani interactions. We show that salicylic (SA) and COI1 are necessary for defence in shoots and tubers to this necrotroph. We also screened a crossing population and identified “potential” D. solani susceptibility genes related to transcriptional regulation. We also show that while SA is necessary to restrict lesion development and pathogen growth in response to the necrotroph Alternaria solani, COI1 affects pathogen growth only. Transcriptomic analysis indicated that rapid defence response to A. solani involves biotic, abiotic and oxidative stress related transcripts regulated by SA and COI1. We identified a citrate binding protein, which is also induced by resistance inducers, as an SA-repressed susceptibility factor to A. solani. Finally, proteomics of PAMP triggered immunity revealed upregulation of oxidative stress proteins while proteins related to oxidative stress tolerance, GTP binding activity were specifically upregulated in effector triggered immunity interactions.
  •  
2.
  • Burra, Dharani, et al. (författare)
  • RNAseq and Proteomics for Analysing Complex Oomycete Plant Interactions
  • 2016
  • Ingår i: Current Issues in Molecular Biology. - : MDPI AG. - 1467-3037 .- 1467-3045. ; 19, s. 73-87
  • Forskningsöversikt (refereegranskat)abstract
    • The oomycetes include some of the most devastating plant pathogens. In this review we discuss the latest results from oomycete and plant studies with emphasis on interaction studies. We focus on the outcomes of RNAseq and proteomics studies and some pitfalls of these approaches. Both pathogenic interactions and biological control are discussed. We underline the usefulness of studies at several levels of complexity from studies of one organism, up to two or more and within agricultural fields (managed settings) up to wild ecosystems. Finally we identify areas of future interest such as detailed interactome studies, dual RNAseq studies, peptide modification studies and population/meta omics with or without biological control agents.
  •  
3.
  • Liljeroth, Erland, et al. (författare)
  • Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials
  • 2016
  • Ingår i: Crop Protection. - : Elsevier BV. - 0261-2194 .- 1873-6904. ; 86, s. 42-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Potato late blight caused by the oomycete Phytophthora infestans is a devastating disease of potato worldwide. Most of the potato cultivars grown in conventional agriculture are susceptible, or at best moderately resistant, and require frequent applications of fungicides to avoid heavy yield losses.In field trials spanning four years, we have investigated the effect of potassium phosphite, an inorganic salt on potato late blight. Potassium phosphite is known to induce defence responses in potato and to also have direct toxic effects on oomycetes, which in turn counteract late blight and tuber blight development. However, the use of this salt is not yet implemented and approved in European potato cultivation. We compared the effect of phosphite alone with fungicides currently used in Swedish potato cultivation. We also investigated the combined use of potassium phosphite and reduced doses of fungicides. Table potato cultivars and starch potato cultivars with different levels of resistance were used.We found that potassium phosphite in combination with reduced doses of fungicides results in the same level of protection as treatments with the recommended full dose of fungicides. These combined treatments reduce the need of traditional fungicides and may also decrease the selection pressure for fungicide resistance development in the pathogen. In relatively resistant starch potato cultivars using phosphite alone gave sufficient protection against late blight. Furthermore, in starch potato a combination of phosphite and fungicides at two-week intervals provided similar protection to weekly applications of fungicide at the recommended dose. Foliar treatment with phosphite also gave protection against tuber blight at similar levels to that of the best-performing fungicide. Our data suggests that potassium phosphite could be used in potato cultivation in temperate regions such as in Sweden, at least in combinations with reduced rates of fungicides. The implementation of the use of phosphite in practical potato crop protection as part of an IPM strategy is discussed. Doses, intervals and combinations could be adjusted to the level of cultivar resistance. (C) 2016 The Authors. Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy