SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Burra Dharani) "

Search: WFRF:(Burra Dharani)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bengtsson, Therese, et al. (author)
  • Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach
  • 2014
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15
  • Journal article (peer-reviewed)abstract
    • Background: Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. beta-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. Results: Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. Conclusions: BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world.
  •  
2.
  • Burra, Dharani, et al. (author)
  • Comparative membrane-associated proteomics of three different immune reactions in potato
  • 2018
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 19:2
  • Journal article (peer-reviewed)abstract
    • Plants have evolved different types of immune reactions but large-scale proteomics about these processes are lacking, especially in the case of agriculturally important crop pathosystems. We have established a system for investigating PAMP-triggered immunity (PTI) and two different effector-triggered immunity (ETI; triggered by Avr2 or IpiO) responses in potato. The ETI responses are triggered by molecules from the agriculturally important Phytophthora infestans interaction. To perform large-scale membrane protein-based comparison of these responses, we established a method to extract proteins from subcellular compartments in leaves. In the membrane fractions that were subjected to quantitative proteomics analysis, we found that most proteins regulated during PTI were also regulated in the same way in ETI. Proteins related to photosynthesis had lower abundance, while proteins related to oxidative and biotic stress, as well as those related to general antimicrobial defense and cell wall degradation, were found to be higher in abundance. On the other hand, we identified a few proteins—for instance, an ABC transporter-like protein—that were only found in the PTI reaction. Furthermore, we also identified proteins that were regulated only in ETI interactions. These included proteins related to GTP binding and heterotrimeric G-protein signaling, as well as those related to phospholipase signaling.
  •  
3.
  • Burra, Dharani (author)
  • Defence related molecular signalling in Potato : new perspectives from “- Omics”
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Potato production is hampered by several pathogens and is subjected to intense chemical based disease control, use of which also has undesirable consequences. Resistance breeding programs have also shown limited success. Hence, there is a need to develop durable disease resistance. Omics-techniques enable new layers of knowledge regarding molecules and their interactions mediating defence, which can contribute to identification of durable resistance sources. A novel network-based approach was used to improve the existing annotation of gene probes on the genome based microarray. Approximately 8000 unannotated probes received a new annotation. This improved annotation was used to assess genome wide changes in transcripts and proteins in response to treatments with resistance inducers, β- amino butyric acid (BABA) and Phosphite based salt (Phi). Five thousand transcripts were significantly regulated 48 hours after 10mM BABA treatment while one was regulated with 1mM BABA. In coherence, 10 mM BABA but not 1 mM induced protection to the hemibiotroph Phytophthora infestans. No transcript was significantly regulated 48 hours after Phi treatment. Time course analysis revealed that Phi exerts a transient effect, as significant transcriptomic changes were observed only 3, 6 and 11 hours after treatment. In contrast, plants showed resistance to P. infestans even at 120 hours after Phi treatment. Phi and BABA dependent “Induced state” is not restricted to transcripts related to plant defence, as transcripts related to abiotic stress and primary metabolism were altered, while biotic stress and cell wall related proteins also increased in abundance. Furthermore, an in vitro based blackleg disease screening assay was developed to investigate Potato – Dickeya solani interactions. We show that salicylic (SA) and COI1 are necessary for defence in shoots and tubers to this necrotroph. We also screened a crossing population and identified “potential” D. solani susceptibility genes related to transcriptional regulation. We also show that while SA is necessary to restrict lesion development and pathogen growth in response to the necrotroph Alternaria solani, COI1 affects pathogen growth only. Transcriptomic analysis indicated that rapid defence response to A. solani involves biotic, abiotic and oxidative stress related transcripts regulated by SA and COI1. We identified a citrate binding protein, which is also induced by resistance inducers, as an SA-repressed susceptibility factor to A. solani. Finally, proteomics of PAMP triggered immunity revealed upregulation of oxidative stress proteins while proteins related to oxidative stress tolerance, GTP binding activity were specifically upregulated in effector triggered immunity interactions.
  •  
4.
  • Burra, Dharani, et al. (author)
  • Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans
  • 2014
  • In: BMC Plant Biology. - : Springer Science and Business Media LLC. - 1471-2229. ; 14
  • Journal article (peer-reviewed)abstract
    • Background: Potato late blight caused by the oomycete pathogen Phytophthora infestans can lead to immense yield loss. We investigated the transcriptome of Solanum tubersoum (cv. Desiree) and characterized the secretome by quantitative proteomics after foliar application of the protective agent phosphite. We also studied the distribution of phosphite in planta after application and tested transgenic potato lines with impaired in salicylic and jasmonic acid signaling. Results: Phosphite had a rapid and transient effect on the transcriptome, with a clear response 3 h after treatment. Strikingly this effect lasted less than 24 h, whereas protection was observed throughout all time points tested. In contrast, 67 secretome proteins predominantly associated with cell-wall processes and defense changed in abundance at 48 h after treatment. Transcripts associated with defense, wounding, and oxidative stress constituted the core of the phosphite response. We also observed changes in primary metabolism and cell wall-related processes. These changes were shown not to be due to phosphate depletion or acidification caused by phosphite treatment. Of the phosphite-regulated transcripts 40% also changed with beta-aminobutyric acid (BABA) as an elicitor, while the defence gene PR1 was only up-regulated by BABA. Although phosphite was shown to be distributed in planta to parts not directly exposed to phosphite, no protection in leaves without direct foliar application was observed. Furthermore, the analysis of transgenic potato lines indicated that the phosphite-mediated resistance was independent of the plant hormones salicylic and jasmonic acid. Conclusions: Our study suggests that a rapid phosphite-triggered response is important to confer long-lasting resistance against P. infestans and gives molecular understanding of its successful field applications.
  •  
5.
  • Burra, Dharani, et al. (author)
  • Phytoplasma infection of a tropical root crop triggers bottom-up cascades by favoring generalist over specialist herbivores
  • 2017
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12
  • Journal article (peer-reviewed)abstract
    • Global interest on plant-microbe-insect interactions is rapidly growing, revealing the multiple ways in which microorganisms mediate plant-herbivore interactions. Phytopathogens regularly alter whole repertoires of plant phenotypic traits, and bring about shifts in key chemical or morphological characteristics of plant hosts. Pathogens can also cause cascading effects on higher trophic levels, and eventually shape entire plant-associated arthropod communities. We tested the hypothesis that a Candidatus Phytoplasma causing cassava witches' broom (CWB) on cassava (Manihot esculenta Grantz) is altering species composition of invasive herbivores and their associated parasitic hymenopterans. We conducted observational studies in cassava fields in eastern Cambodia to assess the effect of CWB infection on abundance of specialist and generalist mealybugs (Homoptera: Pseudococcidae), and associated primary and hyper-parasitoid species. CWB infection positively affects overall mealybug abundance and species richness at a plant-and field-level, and disproportionately favors a generalist mealybug over a specialist feeder. CWB phytoplasma infection led to increased parasitoid richness and diversity, with richness of 'comparative' specialist taxa being the most significantly affected. Parasitism rate did not differ among infected and uninfected plants, and mealybug host suppression was not impacted. CWB phytoplasma modifies host plant quality for sap-feeding homopterans, differentially affects success rates of two invasive species, and generates niche opportunities for higher trophic orders. By doing so, a Candidatus phytoplasma affects broader food web structure and functioning, and assumes the role of an ecosystem engineer. Our work unveils key facets of phytoplasma ecology, and sheds light upon complex multi-trophic interactions mediated by an emerging phytopathogen. These findings have further implications for invasion ecology and management.
  •  
6.
  • Burra, Dharani, et al. (author)
  • RNAseq and Proteomics for Analysing Complex Oomycete Plant Interactions
  • 2016
  • In: Current Issues in Molecular Biology. - : MDPI AG. - 1467-3037 .- 1467-3045. ; 19, s. 73-87
  • Research review (peer-reviewed)abstract
    • The oomycetes include some of the most devastating plant pathogens. In this review we discuss the latest results from oomycete and plant studies with emphasis on interaction studies. We focus on the outcomes of RNAseq and proteomics studies and some pitfalls of these approaches. Both pathogenic interactions and biological control are discussed. We underline the usefulness of studies at several levels of complexity from studies of one organism, up to two or more and within agricultural fields (managed settings) up to wild ecosystems. Finally we identify areas of future interest such as detailed interactome studies, dual RNAseq studies, peptide modification studies and population/meta omics with or without biological control agents.
  •  
7.
  • Burra, Dharani, et al. (author)
  • Salicylic and jasmonic acid pathways are necessary for defence against Dickeya solani as revealed by a novel method for Blackleg disease screening of invitro grown potato
  • 2015
  • In: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 17, s. 1030-1038
  • Journal article (peer-reviewed)abstract
    • Potato is major crop ensuring food security in Europe, and blackleg disease is increasingly causing losses in yield and during storage. Recently, one blackleg pathogen, Dickeya solani has been shown to be spreading in Northern Europe that causes aggressive disease development. Currently, identification of tolerant commercial potato varieties has been unsuccessful; this is confounded by the complicated etiology of the disease and a strong environmental influence on disease development. There is currently a lack of efficient testing systems. Here, we describe a system for quantification of blackleg symptoms on shoots of sterile invitro potato plants, which saves time and space compared to greenhouse and existing field assays. We found no evidence for differences in infection between the described invitro-based screening method and existing greenhouse assays. This system facilitates efficient screening of blackleg disease response of potato plants independent of other microorganisms and variable environmental conditions. We therefore used the invitro screening method to increase understanding of plant mechanisms involved in blackleg disease development by analysing disease response of hormone- related (salicylic and jasmonic acid) transgenic potato plants. We show that both jasmonic (JA) and salicylic (SA) acid pathways regulate tolerance to blackleg disease in potato, a result unlike previous findings in Arabidopsis defence response to necrotrophic bacteria. We confirm this by showing induction of a SA marker, pathogenesis-related protein 1 (StPR1), and a JA marker, lipoxygenase (StLOX), in Dickeya solani infected invitro potato plants. We also observed that tubers of transgenic potato plants were more susceptible to soft rot compared to wild type, suggesting a role for SA and JA pathways in general tolerance to Dickeya.
  •  
8.
  • Burra, Dharani, et al. (author)
  • Soil fertility regulates invasive herbivore performance and top-down control in tropical agroecosystems of Southeast Asia
  • 2017
  • In: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 249, s. 38-49
  • Journal article (peer-reviewed)abstract
    • In terrestrial ecosystems, changes in soil nutrient availability, plant growth or natural enemies can generate important shifts in abundance of organisms at various trophic levels. In agroecosystems the performance of (invasive) herbivores and their impacts on crops is of particular concern. Scientists are presently challenged with making reliable inferences on invader success, natural enemy performance and efficacy of biological control, particularly in tropical agroecosystems. In this study, we assess how trophic regulatory forces (bottom-up vs. top down) influence the success of three globally important pests of cassava. We examine the mealybug species (Hemiptera: Pseudococcidae) of differing host breadth and invasion history: Phenacoccus manihoti, Paracoccus marginatus, and Pseudococcus jackbeardsleyi. Potted plant fertilizer trials were combined with a regional survey in Vietnam, Laos and Cambodia of 65 cassava fields of similar size and age, but with varying soil fertility. Relative abundance of each mealybug invader was mapped along a soil fertility gradient, and contrasted with site-specific measures of parasitism. Potted plant trials revealed strong bottom-up effects for P. manihoti, such that impacts of nitrogen and potassium additions were propagated through to higher trophic levels and substantially boost development and fitness of its specialist parasitoid, Anctgyrus lopezi (Hymenoptera: Encyrtidae). Field surveys indicate that mealybug performance is highly species-specific and context-dependent. For example, field-level abundance of P. jackbeardsleyi and P. marginatus, was related to measures of soil fertility parameters, soil texture and plant disease incidence. Furthermore, for P. manihoti, in-field abundance is equally associated with soil texture (i.e., silt content). Principal component analysis (PCA) and regression suggested that P. manihoti and P. marginatus are disproportionately favored in low-fertility conditions, while P. jackbeardsleyi prospers in settings with high organic carbon and phosphorus. Parasitism of P. manihoti by A. lopezi varied greatly with field and soil fertility conditions, and was highest in soils with intermediate fertility levels and where management practices include the addition of fertilizer supplements. Our characterization of the relative performance of invasive mealybugs and strength of parasitism across variable soil fertility conditions will help guide parasitoid release programs and soil management practices that enhance mealybug biological control.
  •  
9.
  •  
10.
  • Liljeroth, Erland, et al. (author)
  • Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials
  • 2016
  • In: Crop Protection. - : Elsevier BV. - 0261-2194 .- 1873-6904. ; 86, s. 42-55
  • Journal article (peer-reviewed)abstract
    • Potato late blight caused by the oomycete Phytophthora infestans is a devastating disease of potato worldwide. Most of the potato cultivars grown in conventional agriculture are susceptible, or at best moderately resistant, and require frequent applications of fungicides to avoid heavy yield losses.In field trials spanning four years, we have investigated the effect of potassium phosphite, an inorganic salt on potato late blight. Potassium phosphite is known to induce defence responses in potato and to also have direct toxic effects on oomycetes, which in turn counteract late blight and tuber blight development. However, the use of this salt is not yet implemented and approved in European potato cultivation. We compared the effect of phosphite alone with fungicides currently used in Swedish potato cultivation. We also investigated the combined use of potassium phosphite and reduced doses of fungicides. Table potato cultivars and starch potato cultivars with different levels of resistance were used.We found that potassium phosphite in combination with reduced doses of fungicides results in the same level of protection as treatments with the recommended full dose of fungicides. These combined treatments reduce the need of traditional fungicides and may also decrease the selection pressure for fungicide resistance development in the pathogen. In relatively resistant starch potato cultivars using phosphite alone gave sufficient protection against late blight. Furthermore, in starch potato a combination of phosphite and fungicides at two-week intervals provided similar protection to weekly applications of fungicide at the recommended dose. Foliar treatment with phosphite also gave protection against tuber blight at similar levels to that of the best-performing fungicide. Our data suggests that potassium phosphite could be used in potato cultivation in temperate regions such as in Sweden, at least in combinations with reduced rates of fungicides. The implementation of the use of phosphite in practical potato crop protection as part of an IPM strategy is discussed. Doses, intervals and combinations could be adjusted to the level of cultivar resistance. (C) 2016 The Authors. Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view