SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buyanova M.) srt2:(2015-2019)"

Sökning: WFRF:(Buyanova M.) > (2015-2019)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Göransson, D. J.O., et al. (författare)
  • Measurements of Strain and Bandgap of Coherently Epitaxially Grown Wurtzite InAsP-InP Core-Shell Nanowires
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 19:4, s. 2674-2681
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on experimental determination of the strain and bandgap of InAsP in epitaxially grown InAsP-InP core-shell nanowires. The core-shell nanowires are grown via metal-organic vapor phase epitaxy. The as-grown nanowires are characterized by transmission electron microscopy, X-ray diffraction, micro-photoluminescence (μPL) spectroscopy, and micro-Raman (μ-Raman) spectroscopy measurements. We observe that the core-shell nanowires are of wurtzite (WZ) crystal phase and are coherently strained with the core and the shell having the same number of atomic planes in each nanowire. We determine the predominantly uniaxial strains formed in the core-shell nanowires along the nanowire growth axis and demonstrate that the strains can be described using an analytical expression. The bandgap energies in the strained WZ InAsP core materials are extracted from the μPL measurements of individual core-shell nanowires. The coherently strained core-shell nanowires demonstrated in this work offer the potentials for use in constructing novel optoelectronic devices and for development of piezoelectric photovoltaic devices.
  •  
2.
  • Philipps, Jan M., et al. (författare)
  • Photoelectrochemical response of GaN, InGaN, and GaNP nanowire ensembles
  • 2018
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 123:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoelectrochemical responses of GaN, GaNP, and InGaN nanowire ensembles are investigated by the electrical bias dependent photoluminescence, photocurrent, and spin trapping experiments. The results are explained in the frame of the surface band bending model. The model is sufficient for InGaN nanowires, but for GaN nanowires the electrochemical etching processes in the anodic regime have to be considered additionally. These processes lead to oxygen rich surface (GaxOy) conditions as evident from energy dispersive X-ray fluorescence. For the GaNP nanowires, a bias dependence of the carrier transfer to the electrolyte is not reflected in the photoluminescence response, which is tentatively ascribed to a different origin of radiative recombination in this material as compared to (In) GaN. The corresponding consequences for the applications of the materials for water splitting or pH-sensing will be discussed. Published by AIP Publishing.
  •  
3.
  • Philipps, Jan M., et al. (författare)
  • Study of the carrier transfer across the GaNP nanowire electrolyte interface by electron paramagnetic spin trapping
  • 2017
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 110:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the transfer of photoexcited charge carriers from GaP and GaNP nanowires to an electrolyte by bias-dependent photocurrent and electron paramagnetic resonance experiments using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap. The results of the latter show that hydroxyl radicals are created over the entire applied bias range from -1000mV to +1300mV by hole transfer. In contrast, the photocurrent changes from cathodic to anodic at the open circuit potential of the three-electrode setup with the nanowire sample acting as the working electrode. The experiments show that the photoelectrochemical response of GaNP nanowires is significantly stronger compared to that of the GaP nanowires. Published by AIP Publishing.
  •  
4.
  • Filippov, Stanislav (författare)
  • Micro-photoluminescence and micro-Raman spectroscopy of novel semiconductor nanostructures
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Low-dimensional semiconductor structures, such as one-dimensional nanowires (NWs) and zerodimensional quantum dots (QDs), are materials with novel fundamental physical properties and a great potential for a wide range of nanoscale device applications. Here, especially promising are direct bandgap II-VI and III-V compounds and related alloys with a broad selection of compositions and band structures. For examples, NWs based on dilute nitride alloys, i.e. GaNAs and GaNP, provide both an optical active medium and well-shaped cavity and, therefore, can be used in a variety of advanced optoelectronic devices including intermediate band solar cells and efficient light-emitters. Self-assembled InAs QDs formed in the GaAs matrix are proposed as building blocks for entangled photon sources for quantum cryptography and quantum information processing as well as for spin light emitting devices. ZnO NWs can be utilized in a variety of applications including efficient UV lasers and gas sensors. In order to fully explore advantages of nanostructured materials, their electronic properties and lattice structure need to be comprehensively characterized and fully understood, which is not yet achieved in the case of aforementioned material systems. The research work presented this thesis addresses a selection of open issues via comprehensive optical characterization of individual nanostructures using micro-Raman ( -Raman) and micro-photoluminescence ( -PL) spectroscopies.In paper 1 we study polarization properties of individual GaNP and GaP/GaNP core/shell NWs using polarization resolved μ-PL spectroscopy. Near band-edge emission in these structures is found to be strongly polarized (up to 60% at 150K) in the orthogonal direction to the NW axis, in spite of their zinc blende (ZB) structure. This polarization response, which is unusual for ZB NWs, is attributed to the local strain in the vicinity of the N-related centers participating in the radiative recombination and to their preferential alignment along the growth direction, presumably caused by the presence of planar defects. Our findings therefore show that defect engineering via alloying with nitrogen provides an additional degree of freedom to control the polarization anisotropy of III-V nanowires, advantageous for their applications as a nanoscale source of polarized light.Structural and optical properties of novel coaxial GaAs/Ga(N)As NWs grown on Si substrates, were evaluated in papers 2-4. In paper 2 we show by using -Raman spectroscopy that, though nitrogen incorporation shortens a phonon correlation length, the GaNAs shell with [N]<0.6% has a low degree of alloy disorder and weak residual strain. Additionally, Raman scattering by the GaAs-like and GaNlike phonons is found to be enhanced when the excitation energy approaches the E+ transition energy. This effect was attributed the involvement of intermediate states that were created by N-related clusters in proximity to the E+ subband. Recombination processes in these structures were studied in paper 3 by means of μ-PL, μ-PL excitation (μ-PLE), and time-resolved PL spectroscopies. At low temperatures, the alloy disorder is found to localize photo-excited carriers leading to predominance of localized exciton (LE) transitions in the PL spectra. Some of the local fluctuations in N composition are suggested to create three-dimensional confining potentials equivalent to that for QDs, based on the observation of sharp PL lines within the LE contour. In paper 4 we show that the formation of these QD-like confinement potentials is somewhat facilitated in spatial regions of the NWs with a high density of structural defects, based on correlative spatially-resolved structural and optical studies. It is also concluded the principal axis of these QD-like local potentials is mainly oriented along the growth direction and emit light that is linearly polarized in the direction orthogonal to the NW axis. At room temperature, the PL emission is found to be dominated by recombination of free carriers/excitons and their lifetime is governed by non-radiative recombination via surface states. The surface recombination is found to become less severe upon N incorporation due to N-induced modification of the surface states, possibly due to partial surface nitridation. All these findings suggest that the GaNAs/GaAs hetero-structures with the onedimensional geometry are promising for fabrication of novel optoelectronic devices on foreign substrates (e.g. Si).Fine-structure splitting (FSS) of excitons in semiconductor nanostructures has significant implications in photon entanglement, relevant to quantum information technology and spintronics. In paper 5 we study FSS in various laterally-arranged single quantum molecular structures (QMSs), including double QDs (DQDs), quantum rings (QRs), and QD-clusters (QCs), by means of polarization resolved μ-PL spectroscopy. It is found that FSS strongly depends on the geometric arrangements of the QMSs, which can effectively tune the degree of asymmetry in the lateral confinement potential of the excitons and can reduce FSS even in a strained QD system to a limit similar to strain-free QDs.Fabrication of nanostructured ZnO-based devices involves, as a compulsory step, deposition of thin metallic layers. In paper 6 we investigate impact of metallization by Ni on structural quality of ZnO NWs by means of Raman spectroscopy. We show that Ni coating of ZnO NWs causes passivation of surface states responsible for the enhanced intensity of the A1(LO) in the bare ZnO NWs. From the resonant Raman studies, strong enhancement of the multiline Raman signal involving A1(LO) in the ZnO/Ni NWs is revealed and is attributed to the combined effects of the Fröhlich interaction and plasmonic coupling. The latter effect is also suggested to allow detection of carbon-related species absorbed at the surface of a single ZnO/Ni NW, promising for utilizing such structures as efficient nano-sized gas sensors.
  •  
5.
  • Filippov, Stanislav, et al. (författare)
  • Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires
  • 2016
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 8:35, s. 15939-15947
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments in fabrication techniques and extensive investigations of the physical properties of III-V semiconductor nanowires (NWs), such as GaAs NWs, have demonstrated their potential for a multitude of advanced electronic and photonics applications. Alloying of GaAs with nitrogen can further enhance the performance and extend the device functionality via intentional defects and heterostructure engineering in GaNAs and GaAs/GaNAs coaxial NWs. In this work, it is shown that incorporation of nitrogen in GaAs NWs leads to formation of three-dimensional confining potentials caused by short-range fluctuations in the nitrogen composition, which are superimposed on long-range alloy disorder. The resulting localized states exhibit a quantum-dot like electronic structure, forming optically active states in the GaNAs shell. By directly correlating the structural and optical properties of individual NWs, it is also shown that formation of the localized states is efficient in pure zinc-blende wires and is further facilitated by structural polymorphism. The light emission from these localized states is found to be spectrally narrow (similar to 50-130 mu eV) and is highly polarized (up to 100%) with the preferable polarization direction orthogonal to the NW axis, suggesting a preferential orientation of the localization potential. These properties of self-assembled nano-emitters embedded in the GaNAs-based nanowire structures may be attractive for potential optoelectronic applications.
  •  
6.
  • Filippov, Stanislav, et al. (författare)
  • Structural properties of GaNAs nanowires probed by micro-Raman spectroscopy
  • 2016
  • Ingår i: Semiconductor Science and Technology. - : IOP Publishing. - 0268-1242 .- 1361-6641. ; 31:2
  • Tidskriftsartikel (refereegranskat)abstract
    • GaNAs-based nanowires (NWs) form a novel material system of potential importance for applications in advanced optoelectronic and photonic devices, thanks to the advantages provided by band-structure engineering, one-dimensional architecture and the possibility to combine them with mainstream silicon technology. In this work we utilize the micro-Raman scattering technique to systematically study the structural properties of such GaAs/GaNAs core/shell NW structures grown by molecular beam epitaxy on a Si substrate. It is shown that the employed one-dimensional architecture allows the fabrication of a GaNAs shell with a low degree of alloy disorder and weak residual strain, at least within the studied range of nitrogen (N) compositions [N] < 0.6%. Raman scattering by the GaAs-like and GaN-like phonons is found to be enhanced when the excitation energy approaches the E + transition energy. Since this effect is found to be more pronounced for the GaN-like phonons, the involved intermediate states are concluded to be localized in proximity to N impurities, i.e. they likely represent N-related cluster states located in proximity to E + .
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Rudko, G.Yu, et al. (författare)
  • Optically detected magnetic resonance study of relaxation/emission processes in the nanoparticle-polymer composite
  • 2019
  • Ingår i: SPQEO. - Kiev, Ukraine : Natsional'na Akademiya Nauk Ukrainy * Instytut Fizyky Napivprovidnykiv. - 1605-6582. ; 22:3, s. 310-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Two nanocomposites containing CdS nanoparticles in polymeric matrices were studied using the photoluminescence (PL) and optically detected magnetic resonance (ODMR) methods. Due to equal sizes of NPs in the composites (~5 nm) but different matrices – the oxygen-containing polymer PVA (polyvinyl alcohol) and oxygen-free polymer PEI (polyethyleneimine) – differences of nanocomposites properties are predominantly caused by different interfacial conditions. ODMR spectra have revealed five types of centers related to the PL emission – four centers involved in radiative recombination and one center related to non-radiative recombination processes. The oxygen-related interfacial center in CdS/PVA (LK1-center) and sulfur vacancy center in CdS/PEI (Vs-center) were identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy