SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cafagna F.) srt2:(2015-2019)"

Sökning: WFRF:(Cafagna F.) > (2015-2019)

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
3.
  • Bisconti, F, et al. (författare)
  • Mini-EUSO engineering model : Tests in open-sky condition
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth’s atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported. 
  •  
4.
  • Casolino, M, et al. (författare)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44?), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array. 
  •  
5.
  • Miyamoto, H, et al. (författare)
  • Space debris detection and tracking with the techniques of cosmic ray physics
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector. 
  •  
6.
  • Miyamoto, H., et al. (författare)
  • The Euso@turlab : Test of mini-EUSO engineering model
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented. 
  •  
7.
  • Adriani, O., et al. (författare)
  • MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 818:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic-ray hydrogen and helium (H-1, H-2, He-3, He-4) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes H-2 and He-3 in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.
  •  
8.
  • Adriani, O., et al. (författare)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
9.
  • Adriani, O., et al. (författare)
  • Reentrant albedo proton fluxes measured by the PAMELA experiment
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:5, s. 3728-3738
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a precise measurement of downward going albedo proton fluxes for kinetic energy above similar to 70 MeV performed by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and untrapped spreading over all latitudes, including both short-lived (precipitating) and long-lived (pseudotrapped) components. In addition, features of the penumbra region around the geomagnetic cutoff were investigated in detail. PAMELA results significantly improve the characterization of the high-energy albedo proton populations at low-Earth orbits.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy