SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Calcutt J.) srt2:(2018)"

Sökning: WFRF:(Calcutt J.) > (2018)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Calcutt, H., et al. (författare)
  • The ALMA-PILS survey: complex nitriles towards IRAS 16293-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Complex organic molecules are readily detected in the inner regions of the gaseous envelopes of forming protostars. Their detection is crucial to understanding the chemical evolution of the Universe and exploring the link between the early stages of star formation and the formation of solar system bodies, where complex organic molecules have been found in abundance. In particular, molecules that contain nitrogen are interesting due to the role nitrogen plays in the development of life and the compact scales such molecules have been found to trace around forming protostars. Aims. The goal of this work is to determine the inventory of one family of nitrogen-bearing organic molecules, complex nitriles (molecules with a -C N functional group) towards two hot corino sources in the low-mass protostellar binary IRAS 16293-2422. This work explores the abundance differences between the two sources, the isotopic ratios, and the spatial extent derived from molecules containing the nitrile functional group. Methods. Using data from the Protostellar Interferometric Line Survey (PILS) obtained with ALMA, we determine abundances and excitation temperatures for the detected nitriles. We also present a new method for determining the spatial structure of sources with high line density and large velocity gradients-Velocity-corrected INtegrated emission (VINE) maps. Results. We detect methyl cyanide (CH3CN) as well as five of its isotopologues, including CHD2CN, which is the first detection in the interstellar medium (ISM). We also detect ethyl cyanide (C2H5CN), vinyl cyanide (C2H3CN), and cyanoacetylene (HC3N). We find that abundances are similar between IRAS 16293A and IRAS 16293B on small scales except for vinyl cyanide which is only detected towards the latter source. This suggests an important difference between the sources either in their evolutionary stage or warm-up timescales. We also detect a spatially double-peaked emission for the first time in molecular emission in the A source, suggesting that this source is showing structure related to a rotating toroid of material. Conclusions. With high-resolution observations, we have been able to show for the first time a number of important similarities and differences in the nitrile chemistry in these objects. These illustrate the utility of nitriles as potential tracers of the physical conditions in star-forming regions.
  •  
2.
  • Calcutt, Hannah, 1988, et al. (författare)
  • The ALMA-PILS survey: first detection of methyl isocyanide (CH3NC) in a solar-type protostar
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Methyl isocyanide (CH3NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH3CN), is one of the most abundant complex organic molecules detected in the ISM, with detections in a variety of low- and high-mass sources. We use ALMA observations from the Protostellar Interferometric Line Survey (PILS) to search for methyl isocyanide and compare its abundance with that of its isomer methyl cyanide. We use a new line catalogue from the Cologne Database for Molecular Spectroscopy (CDMS) to identify methyl isocyanide lines. We also model the chemistry with an updated version of the three-phase chemical kinetics model MAGICKAL, presenting the first chemical modelling of methyl isocyanide to date. We detect methyl isocyanide for the first time in a solar-type protostar, IRAS 16293-2422 B, and present upper limits for its companion protostar, IRAS 16293-2422 A. Methyl isocyanide is found to be at least 20 times more abundant in source B compared to source A, with a CH3CN/CH3NC abundance ratio of 200 in IRAS 16293-2422 B and >5517 in IRAS 16293-2422 A. We also present the results of a chemical model of methyl isocyanide chemistry in both sources, and discuss the implications on methyl isocyanide formation mechanisms and the relative evolutionary stages of both sources.
  •  
3.
  • Coutens, A., et al. (författare)
  • First detection of cyanamide (NH2CN) towards solar-type protostars
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Searches for the prebiotically relevant cyanamide (NH 2 CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13 C isotopologs of NH 2 CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide (∼1.7%) is similar to that of formamide (NH 2 CHO), which may suggest that these two molecules share NH 2 as a common precursor. The NH 2 CN/NH 2 CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH 2 CN on grains through the NH 2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH 2 CN with the correct choice of physical parameters.
  •  
4.
  • Drozdovskaya, M. N., et al. (författare)
  • The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:4, s. 4949-4964
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolutionary past of our Solar system can be pieced together by comparing analogous lowmass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey are used to search for S-bearing molecules in the outer disc-like structure, ~60 au from IRAS 16293-2422 B, and are compared with data on 67P/Churyumov-Gerasimenko (67P/C-G) stemming from the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard Rosetta. Species such as SO 2 , SO, OCS, CS, H 2 CS, H 2 S, and CH 3 SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC 33 S towards this source and a tentative first-time detection of C 36 S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H 2 S in comparison to 67P/C-G; meanwhile, the SO/SO 2 ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH 3 SH/H 2 CS ratio in range of that of our Solar system (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H 2 S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar system may jointly explain the variations between the two low-mass systems.
  •  
5.
  • Jacobsen, S. K., et al. (författare)
  • The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293–2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Class 0 protostellar binary IRAS 16293–2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims. The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods. We present 13CO, C17O and C18O J=3–2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293-2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results. Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293-2422 hot corino which used a single-source approximation. Conclusions. Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplan- etary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source
  •  
6.
  • Jorgensen, J. K., et al. (författare)
  • The ALMA-PILS survey: isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293-2422B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and C-13-bearing variants, are sensitive to the densities, temperatures and timescales characteristic of the environment in which they form, and can therefore provide important constraints on the formation routes and conditions of individual species. Aims. The aim of this paper is to systematically survey the deuteration and the C-13 content of a variety of oxygen-bearing complex organic molecules on solar system scales toward the "B component" of the protostellar binary IRAS16293-2422. Methods. We have used the data from an unbiased molecular line survey of the protostellar binary IRAS16293-2422 between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The data probe scales of 60 AU (diameter) where most of the organic molecules are expected to have sublimated off dust grains and be present in the gas phase. The deuterated and C-13 isotopic species of ketene, acetaldehyde and formic acid, as well as deuterated ethanol, are detected unambiguously for the first time in the interstellar medium. These species are analysed together with the C-13 isotopic species of ethanol, dimethyl ether and methyl formate along with mono-deuterated methanol, dimethyl ether and methyl formate. Results. The complex organic molecules can be divided into two groups with one group, the simpler species, showing a D/H ratio of approximate to 2% and the other, the more complex species, D/H ratios of 4-8%. This division may reflect the formation time of each species in the ices before or during warm-up/infall of material through the protostellar envelope. No significant differences are seen in the deuteration of different functional groups for individual species, possibly a result of the short timescale for infall through the innermost warm regions where exchange reactions between different species may be taking place. The species show differences in excitation temperatures between 125 and 300 K. This likely reflects the binding energies of the individual species, in good agreement with what has previously been found for high-mass sources. For dimethyl ether, the C-12/C-13 ratio is found to be lower by up to a factor of 2 compared to typical ISM values similar to what has previously been inferred for glycolaldehyde. Tentative identifications suggest that the same may apply for C-13 isotopologues of methyl formate and ethanol. If confirmed, this may be a clue to their formation at the late prestellar or early protostellar phases with an enhancement of the available C-13 relative to C-12 related to small differences in binding energies for CO isotopologues or the impact of FUV irradiation by the central protostar. Conclusions. The results point to the importance of ice surface chemistry for the formation of these complex organic molecules at different stages in the evolution of embedded protostars and demonstrate the use of accurate isotope measurements for understanding the history of individual species.
  •  
7.
  • Ligterink, N. F. W., et al. (författare)
  • The ALMA-PILS survey: Stringent limits on small amines and nitrogen-oxides towards IRAS 16293–2422B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydroxylamine (NH2OH) and methylamine (CH3NH2) have both been suggested as precursors to the formation of amino acids and are therefore, of interest to prebiotic chemistry. Their presence in interstellar space and formation mechanisms, however, are not well established. Aims. We aim to detect both amines and their potential precursor molecules NO, N2O, and CH2NH towards the low-mass protostellar binary IRAS 16293–2422, in order to investigate their presence and constrain their interstellar formation mechanisms around a young Sun-like protostar. Methods. ALMA observations from the unbiased, high-angular resolution and sensitivity Protostellar Interferometric Line Survey (PILS) are used. Spectral transitions of the molecules under investigation are searched for with the CASSIS line analysis software. Results. CH2NH and N2O are detected for the first time, towards a low-mass source, the latter molecule through confirmation with the single-dish TIMASSS survey. NO is also detected. CH3NH2 and NH2OH are not detected and stringent upper limit column densities are determined. Conclusions. The non-detection of CH3NH2 and NH2OH limits the importance of formation routes to amino acids involving these species. The detection of CH2NH makes amino acid formation routes starting from this molecule plausible. The low abundances of CH2NH and CH3NH2 compared to Sgr B2 indicate that different physical conditions influence their formation in low- and high-mass sources.
  •  
8.
  • Murillo, N. M., et al. (författare)
  • Tracing the cold and warm physico-chemical structure of deeply embedded protostars: IRAS 16293−2422 versus VLA 1623−2417 N.
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Much attention has been placed on the dust distribution in protostellar envelopes, but there are still many unanswered questions regarding the physico-chemical structure of the gas. Aims. Our aim is to start identifying the factors that determine the chemical structure of protostellar regions, by studying and com- paring low-mass embedded systems in key molecular tracers. Methods. The cold and warm chemical structures of two embedded Class 0 systems, IRAS 16293−2422 and VLA 1623−2417 were characterized through interferometric observations. DCO+, N2H+, and N2D+ were used to trace the spatial distribution and physics of the cold regions of the envelope, while c−C3H2 and C2H from models of the chemistry are expected to trace the warm (UV-irradiated) regions. Results. The two sources show a number of striking similarities and differences. DCO+ consistently traces the cold material at the disk-envelope interface, where gas and dust temperatures are lowered due to disk shadowing. N2H+ and N2D+, also tracing cold gas, show low abundances toward VLA 1623−2417, but for IRAS 16293−2422, the distribution of N2D+ is consistent with the same chemical models that reproduce DCO+. The two systems show different spatial distributions c−C3H2 and C2H. For IRAS 16293−2422, c−C3H2 traces the outflow cavity wall, while C2H is found in the envelope material but not the outflow cavity wall. In contrast, toward VLA 1623−2417 both molecules trace the outflow cavity wall. Finally, hot core molecules are abundantly observed toward IRAS 16293−2422 but not toward VLA 1623−2417. Conclusions. We identify temperature as one of the key factors in determining the chemical structure of protostars as seen in gaseous molecules. More luminous protostars, such as IRAS 16293−2422, will have chemical complexity out to larger distances than colder protostars, such as VLA 1623−2417. Additionally, disks in the embedded phase have a crucial role in controlling both the gas and dust temperature of the envelope, and consequently the chemical structure. Key
  •  
9.
  • Persson, Magnus V., 1983, et al. (författare)
  • The ALMA-PILS Survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293-2422 B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The enhanced degrees of deuterium fractionation observed in envelopes around protostars demonstrate the importance of chemistry at low temperatures, relevant in pre- and protostellar cores. Formaldehyde is an important species in the formation of methanol and more complex molecules. Aims. Here, we aim to present the first study of formaldehyde deuteration on small scales around the prototypical low-mass protostar IRAS 16293-2422 using high spatial and spectral resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the excitation temperature, abundances and fractionation level of several formaldehyde isotopologues, including its deuterated forms. Methods. Excitation temperature and column densities of formaldehyde in the gas close to one of the components of the binary were constrained through modeling of optically thin lines assuming local thermodynamical equilibrium. The abundance ratios were compared to results from previous single dish observations, astrochemical models and local ISM values. Results. Numerous isotopologues of formaldehyde are detected, among them H 2 C 17 O, and D 2 13 CO for the first time in the ISM. The large range of upper energy levels covered by the HDCO lines help constrain the excitation temperature to 106 ± 13 K. Using the derived column densities, formaldehyde shows a deuterium fractionation of HDCO/H 2 CO = 6.5 ± 1%, D 2 CO/HDCO = 12.8 -4.1 +3.3 %, and D 2 CO/H 2 CO = 0.6(4) ± 0.1%. The isotopic ratios derived are 16 O/ 18 O = 805 -79 +43 , 18 O/ 17 O = 3.2 -0.3 +0.2 , and 12 C/ 13 C = 56 -11 +8 . Conclusions. The HDCO/H 2 CO ratio is lower than that found in previous studies, highlighting the uncertainties involved in interpreting single dish observations of the inner warm regions. The D 2 CO/HDCO ratio is only slightly larger than the HDCO/H 2 CO ratio. This is consistent with formaldehyde forming in the ice as soon as CO has frozen onto the grains, with most of the deuteration happening toward the end of the prestellar core phase. A comparison with available time-dependent chemical models indicates that the source is in the early Class 0 stage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy