SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canali Carlo M.) srt2:(2015-2019)"

Sökning: WFRF:(Canali Carlo M.) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Islam, Fhokrul, et al. (författare)
  • Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3. By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-raymagnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V-and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.
  •  
2.
  • Sadowski, Janusz, et al. (författare)
  • Wurtzite (Ga,Mn)As nanowire shells with ferromagnetic properties
  • 2017
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 9:6, s. 2129-2137
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ga,Mn)As having a wurtzite crystal structure was coherently grown by molecular beam epitaxy on the 1100 side facets of wurtzite (Ga,In)As nanowires and further encapsulated by (Ga,Al)As and low temperature GaAs. For the first time, a truly long-range ferromagnetic magnetic order is observed in non-planar (Ga,Mn)As, which is attributed to a more effective hole confinement in the shell containing Mn by the proper selection/choice of both the core and outer shell materials. © The Royal Society of Chemistry.
  •  
3.
  • Aikebaier, Faluke, et al. (författare)
  • Effects of short-range electron-electron interactions in doped graphene
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We study theoretically the effects of short-range electron-electron interactions on the electronic structure of graphene, in the presence of substitutional impurities. Our computational approach is based on the π orbital tight-binding model for graphene, with the electron-electron interactions treated self-consistently at the level of the mean-field Hubbard model. The finite impurity concentration is modeled using the supercell approach. We compare explicitly noninteracting and interacting cases with varying interaction strength and impurity potential strength. We focus in particular on the interaction-induced modifications in the local density of states around the impurity, which is a quantity that can be directly probed by scanning tunneling spectroscopy of doped graphene. We find that the resonant character of the impurity states near the Fermi level is enhanced by the interactions. Furthermore, the size of the energy gap, which opens up at high-symmetry points of the Brillouin zone of the supercell upon doping, is significantly affected by the interactions. The details of this effect depend subtly on the supercell geometry. We use a perturbative model to explain these features and find quantitative agreement with numerical results.
  •  
4.
  • Azimi Mousolou, Vahid, et al. (författare)
  • Spin-electric Berry phase shift in triangular molecular magnets
  • 2016
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 94:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a Berry phase effect on the chiral degrees of freedom of a triangular magnetic molecule. The phase is induced by adiabatically varying an external electric field in the plane of the molecule via a spin-electric coupling mechanism present in these frustrated magnetic molecules. The Berry phase effect depends on spin-orbit interaction splitting and on the electric dipole moment. By varying the amplitude of the applied electric field, the Berry phase difference between the two spin states can take any arbitrary value between zero and π, which can be measured as a phase shift between the two chiral states by using spin-echo techniques. Our result can be used to realize an electric-field-induced geometric phase-shift gate acting on a chiral qubit encoded in the ground-state manifold of the triangular magnetic molecule.
  •  
5.
  • Gooth, Johannes, et al. (författare)
  • Local Magnetic Suppression of Topological Surface States in Bi2Te3 Nanowires
  • 2016
  • Ingår i: ACS Nano. - Washington : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 10:7, s. 7180-7188
  • Tidskriftsartikel (refereegranskat)abstract
    • Locally induced, magnetic order on the surface of a topological insulator nanowire could enable room-temperature topological quantum devices. Here we report on the realization of selective magnetic control over topological surface states on a single facet of a rectangular Bi2Te3 nanowire via a magnetic insulating Fe3O4 substrate. Low-temperature magnetotransport studies provide evidence for local time-reversal symmetry breaking and for enhanced gapping of the interfacial 1D energy spectrum by perpendicular magnetic-field components, leaving the remaining nanowire facets unaffected. Our results open up great opportunities for development of dissipation-less electronics and spintronics.
  •  
6.
  • Islam, Fhokrul, et al. (författare)
  • Impurity potential induced gap at the Dirac point of topological insulators with in-plane magnetization
  • 2019
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 99:15, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum anomalous Hall effect (QAHE), characterized by dissipationless quantized edge transport, relies crucially on a nontrivial topology of the electronic bulk band structure and a robust ferromagnetic order that breaks time-reversal symmetry. Magnetically doped topological insulators (TIs) satisfy both these criteria, and are the most promising quantum materials for realizing the QAHE. Because the spin of the surface electrons aligns along the direction of the magnetic-impurity exchange field, only magnetic TIs with an out-of-plane magnetization are thought to open a gap at the Dirac point (DP) of the surface states, resulting in the QAHE. Using a continuum model supported by atomistic tight-binding and first-principles calculations of transition-metal doped Bi2Se3, we show that a surface-impurity potential generates an additional effective magnetic field which spin polarizes the surface electrons along the direction perpendicular to the surface. The predicted gap-opening mechanism results from the interplay of this additional field and the in-plane magnetization that shifts the position of the DP away from the Γ point. This effect is similar to the one originating from the hexagonal warping correction of the band structure but is one order of magnitude stronger. Our calculations show that in a doped TI with in-plane magnetization the impurity-potential-induced gap at the DP is comparable to the one opened by an out-of-plane magnetization.
  •  
7.
  • Johnson, Alexander I., et al. (författare)
  • A multiferroic molecular magnetic qubit
  • 2019
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 151:17, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The chiral Fe3O(NC5H5)3(O2CC6H5)6 molecular cation, with C-3 symmetry, is composed of three six-fold coordinated spin-carrying Fe3+ cations that form a perfect equilateral triangle. Experimental reports demonstrating the spin-electric effect in this system also identify the presence of a magnetic uniaxis and suggest that this molecule may be a good candidate for an externally controllable molecular qubit. Here, we demonstrate, using standard density-functional methods, that the spin-electric behavior of this molecule could be even more interesting as there are energetically competitive reference states associated with both high and low local spins (S = 5/2 vs S = 1/2) on the Fe3+ ions. Each of these structures allow for spin-electric ground states. We find that qualitative differences in the broadening of the Fe(2s) and O(1s) core levels, shifts in the core-level energies, and the magnetic signatures of the single-spin anisotropy Hamiltonian may be used to confirm whether a transition between a high-spin manifold and a low spin manifold occurs.
  •  
8.
  • Mahani, Mohammad Reza, et al. (författare)
  • Electric manipulation of the Mn-acceptor binding energy and the Mn-Mn exchange interaction on the GaAs (110) surface by nearby As vacancies
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate theoretically the effect of nearby As (arsenic) vacancies on the magnetic properties of substitutional Mn (manganese) impurities on the GaAs (110) surface, using a microscopic tight-binding model which captures the salient features of the electronic structure of both types of defects in GaAs. The calculations show that the binding energy of the Mn-acceptor is essentially unaffected by the presence of a neutral As vacancy, even at the shortest possible VAs--Mn separation. On the other hand, in contrast to a simple tip-induced-band-bending theory and in agreement with experiment, for a positively charged As vacancy the Mn-acceptor binding energy is significantly reduced as the As vacancy is brought closer to the Mn impurity. For two Mn impurities aligned ferromagnetically, we find that nearby charged As vacancies enhance the energy level splitting of the associated coupled acceptor levels, leading to an increase of the effective exchange interaction. Neutral vacancies leave the exchange splitting unchanged. Since it is experimentally possible to switch reversibly between the two charge states of the vacancy, such a local electric manipulation of the magnetic dopants could result in an efficient real-time control of their exchange interaction.
  •  
9.
  • Pertsova, Anna, 1985-, et al. (författare)
  • Chapter Three : Electronic Transport as a Driver for Self-Interaction-Corrected Methods
  • 2015
  • Ingår i: Advances In Atomic, Molecular, and Optical Physics. - : Academic Press. - 9780128021279 ; , s. 29-86
  • Bokkapitel (refereegranskat)abstract
    • While spintronics often investigates striking collective spin e ects in large systems, a very important research direction deals with spin-dependent phenomena in nanostructures, reaching the extreme of a single spin conned in a quantum dot, in a molecule, or localized on an impurity or dopant. The issue considered in this chapter involves taking this extreme to the nanoscale and the quest to use rst-principles methods to predict and control the behavior of a few \spins" (down to 1 spin) when they are placed in an interesting environment. Particular interest is on environments for which addressing these systems with external elds and/or electric or spin currents is possible. The realization of such systems, including those that consist of a core of a few transition-metal (TM) atoms carrying a spin, connected and exchanged-coupled through bridging oxo-ligands has been due to work by many experimental researchers at the interface of atomic, molecular and condensed matter physics. This chapter addresses computational problems associated with understanding the behaviors of nanoand molecular-scale spin systems and reports on how the computational complexity increases when such systems are used for elements of electron transport devices. Especially for cases where these elements are attached to substrates with electronegativities that are very di erent than the molecule, or for coulomb blockade systems, or for cases where the spin-ordering within the molecules is weakly antiferromagnetic, the delocalization error in DFT is particularly problematic and one which requires solutions, such as self-interaction corrections, to move forward. We highlight the intersecting elds of spin-ordered nanoscale molecular magnets, electron transport, and coulomb blockade and highlight cases where self-interaction corrected methodologies can improve our predictive power in this emerging field.
  •  
10.
  • Pertsova, Anna, et al. (författare)
  • Quantum Hall edge states in topological insulator nanoribbons
  • 2016
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 94:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a microscopic theory of the chiral one-dimensional electron gas system localized on the sidewalls of magnetically doped Bi2Se3-family topological insulator nanoribbons in the quantum anomalous Hall effect (QAHE) regime. Our theory is based on a simple continuum model of sidewall states whose parameters are extracted from detailed ribbon and film geometry tight-binding model calculations. In contrast to the familiar case of the quantum Hall effect in semiconductor quantum wells, the number of microscopic chiral channels depends simply and systematically on the ribbon thickness and on the position of the Fermi level within the surface state gap. We use our theory to interpret recent transport experiments that exhibit nonzero longitudinal resistance in samples with accurately quantized Hall conductances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy