SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cani Patrice D.) srt2:(2020-2024)"

Sökning: WFRF:(Cani Patrice D.) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bachmann, Radu, et al. (författare)
  • Akkermansia muciniphila Reduces Peritonitis and Improves Intestinal Tissue Wound Healing after a Colonic Transmural Defect by a MyD88-Dependent Mechanism
  • 2022
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 11:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Anastomotic leakage is a major complication following colorectal surgery leading to peritonitis, complications, and mortality. Akkermansia muciniphila has shown beneficial effects on the gut barrier function. Whether A. muciniphila reduces peritonitis and mortality during colonic leakage is unknown. Whether A. muciniphila can directly modulate the expression of genes in the colonic mucosa in humans has never been studied. We investigated the effects of a pretreatment (14 days) with live A. muciniphila prior to surgical colonic perforation on peritonitis, mortality, and wound healing. We used mice with an inducible intestinal-epithelial-cell-specific deletion of MyD88 (IEC-MyD88 KO) to investigate the role of the innate immune system in this context. In a proof-of-concept pilot study, healthy humans were exposed to A. muciniphila for 2 h and colonic biopsies taken before and after colonic instillation for transcriptomic analysis. Seven days after colonic perforation, A.-muciniphila-treated mice had significantly lower mortality and severity of peritonitis. This effect was associated with significant improvements of wound histological healing scores, higher production of IL22, but no changes in the mucus layer thickness or genes involved in cell renewal, proliferation, or differentiation. All these effects were abolished in IEC-MyD88 KO mice. Finally, human subjects exposed to A. muciniphila exhibited an increased level of the bacterium at the mucus level 2 h after instillation and significant changes in the expression of different genes involved in the regulation of cell cycling, gene transcription, immunity, and inflammation in their colonic mucosa. A. muciniphila improves wound healing during transmural colonic wall defect through mechanisms possibly involving IL22 signaling and requiring MyD88 in the intestinal cells. In healthy humans, colonic administration of A. muciniphila is well tolerated and changes the expression of genes involved in the immune pathways.
  •  
2.
  • Paone, Paola, et al. (författare)
  • Human milk oligosaccharide 2'-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice.
  • 2024
  • Ingår i: Gut. - 0017-5749 .- 1468-3288.
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. Results: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. Conclusion: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.
  •  
3.
  • Shen, Melissa, et al. (författare)
  • Three of a Kind: Control of the Expression of Liver-Expressed Antimicrobial Peptide 2 (LEAP2) by the Endocannabinoidome and the Gut Microbiome
  • 2022
  • Ingår i: MOLECULES. - : MDPI AG. - 1420-3049. ; 27:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome (mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that: (1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2 expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated by PPAR gamma activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either high-fat diet-or genetic leptin signaling deficiency-(i.e., ob/ob and db/db mice) induced obesity. Based on these results, we propose that LEAP2 originating from the small intestine may represent a player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy