SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cao Yixin) srt2:(2022)"

Sökning: WFRF:(Cao Yixin) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Qi, et al. (författare)
  • N-Type Conductive Small Molecule Assisted 23.5% Efficient Inverted Perovskite Solar Cells
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in the perovskite material. These interactions can reduce the trap state densities and inhibit nonradiative recombination of the perovskite bulk. Moreover, B4PyPPM can partially aggregate on the perovskite surface, leading to an improvement in the hole-blocking ability at its interface. This modification can also increase the built-in potential and upshift the Fermi level of the modified perovskite film, promoting electron extraction to the electron transport layer. The champion device achieves a high efficiency of 23.51%. Meantime, the sealed device retains approximate to 80% of its initial performance under a maximum power point tracking for nearly 2400 h, demonstrating an excellent operational stability.
  •  
2.
  • Wang, Tong, et al. (författare)
  • Deep defect passivation and shallow vacancy repair via an ionic silicone polymer toward highly stable inverted perovskite solar cells
  • 2022
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 15:10, s. 4414-4424
  • Tidskriftsartikel (refereegranskat)abstract
    • Additive engineering is an effective strategy for defect passivation and performance improvement of perovskite solar cells (PSCs). However, few additives have achieved outstanding stability with high efficiency by simultaneously passivating deep and shallow defects. Herein, we design a novel ionic silicone polymer (PECL) with multi-active sites as an additive to modify inverted PSCs. The C-O groups in the PECL polymer can chelate with undercoordinated Pb2+ and Pb clusters to passivate deep defects; and the ionic groups in the PECL polymer can generate electrostatic interaction with both positively and negatively charged vacancies, which help to repair shallow defects. Moreover, we quantitatively reveal the effect of deep and shallow defects on the efficiency and stability of PSCs separately, by establishing the correlation between additives with different functional groups and the performance of devices. Consequently, the power conversion efficiency of the PECL-modified inverted PSC increases from 20.02% to 23.11%. More importantly, the encapsulated PSCs maintain 95% of their initial steady-state power output after 1500 hours under AM 1.5 illumination at the maximum power point at 45 degrees C. Therefore, we provide a universal guideline of polymer structure design for defect healing in stabilizing PSCs with high efficiency.
  •  
3.
  • Yang, Jiabao, et al. (författare)
  • Inhibiting metal-inward diffusion-induced degradation through strong chemical coordination toward stable and efficient inverted perovskite solar cells
  • 2022
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 15:5, s. 2154-2163
  • Tidskriftsartikel (refereegranskat)abstract
    • The inward diffusion of metal electrodes is one of the main reasons for the deterioration of the long-term device stability of perovskite solar cells (PSCs). Thus, herein, we adopt a simple additive engineering strategy to modify the barrier material bathocuproine (BCP) with 1,3,5-triazine-2,4,6-trithiol trisodium salt (TTTS). Different from the traditional physical blocking strategies, TTTS could prevent the metal electrodes (e.g., gold, silver, and copper) from diffusing inward through the strong chemical coordination between TTTS and the metal electrode. The TTTS additive also improved the conductivity and band structure of BCP, thus enhancing the ability of BCP to extract electrons from the perovskite layer to the electrode. Consequently, the inverted device modified with TTTS exhibited a high efficiency of 22.59%, which is among the highest efficiencies reported to date for inverted PSCs. More importantly, it showed excellent operational, ambient, and thermal stability. The target device maintained its initial efficiency with no loss under continuous one-sun illumination at maximum power point tracking after 1000 h (the champion device), 91% in air (50% +/- 5% RH) for 5000 h, and 93% after heating at 85 degrees C for 1500 h (average efficiency from ten devices).
  •  
4.
  • Yang, Jiabao, et al. (författare)
  • Overcome Low Intrinsic Conductivity of NiOx Through Triazinyl Modification for Highly Efficient and Stable Inverted Perovskite Solar Cells
  • 2022
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel oxide (NiOx) is a promising hole transport material in inverted organic-inorganic metal halide perovskite solar cells. However, its low intrinsic conductivity hinders its further improvement in device performance. Here, we employ a trimercapto-s-triazine trisodium salt (TTTS) as a chelating agent of Ni2+ in the NiOx layer to improve its conductivity. Due to the electron-deficient triazine ring, the TTTS complexes with Ni2+ in NiOx via a strong Ni2+-N coordination bond and increases the ratio of Ni3+:Ni2+. The increased Ni3+ concentration adjusts the band structure of NiOx, thus enhancing hole density and mobility, eventually improving the intrinsic conductivity of NiOx. As a result, the device with TTTS modification displays a champion power conversion efficiency (PCE) of 22.81%. The encapsulated device based on a modified-NiOx layer maintains 94% of its initial power output at the maximum power point and continuous one-sun illumination for 1000 h at 45 degrees C. In addition, the unencapsulated target devices also maintain 92% at 60 +/- 5% relative humidity and 25 degrees C in the air for 5000 h; and 91% at 85 degrees C in a nitrogen atmosphere for 1000 h. The research provides an effective strategy to enhance PCE and stability of inverted PSCs via modifying NiOx films with triazine molecule.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy