SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caprini M) srt2:(2020-2021)"

Sökning: WFRF:(Caprini M) > (2020-2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barausse, Enrico, et al. (författare)
  • Prospects for fundamental physics with LISA
  • 2020
  • Ingår i: General Relativity and Gravitation. - : SPRINGER/PLENUM PUBLISHERS. - 0001-7701 .- 1572-9532. ; 52:8
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA,we present here a sample of what we view as particularly promising fundamental physics directions. We organize these directions through a "science-first" approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.
  •  
2.
  • Aoyama, T., et al. (författare)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • Ingår i: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Forskningsöversikt (refereegranskat)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
3.
  • Minafo, Y. A., et al. (författare)
  • A stereotyped light chain may shape virus-specific B-cell receptors in HCV-dependent lymphoproliferative disorders
  • 2020
  • Ingår i: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 21:131-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatitis C virus (HCV) causes B-cell lymphoproliferative disorders (LPDs) expressing stereotyped B-cell receptors (BCRs) endowed with rheumatoid factor (RF) activity and putatively recognizing the HCV E2 protein. To further untangle the shaping and function of these BCRs, we analyzed immunoglobulin gene rearrangements of monoclonal B cells from 13 patients with HCV-associated LPDs and correlated their features with the clinical outcomes of antiviral therapy. While only two patients shared a stereotyped heavy-chain complementarity determining region 3 (CDR3) sequence, two kappa chain CDR3 stereotyped sequences accounted for 77% of BCRs. Light chains were enriched in sequences homologous to anti-HCV E2 antibodies compared with heavy chains (7/13 vs. 0/13; p = 0.005). Anti-HCV E2 homology was uniquely associated (7/7 vs. 0/6; p = 0.0006) with a stereotyped CDR3 sequence encoded by IGKV3-20/3D-20 gene(s) accounting for 54% of BCRs. An IGKV3-15/IGKJ1-encoded stereotyped sequence homologous to WA RF accounted for 23% of BCRs. LPDs expressing KCDR3s homologous to anti-HCV E2 antibodies responded more frequently to the eradication of HCV by antiviral therapy (6/6 vs. 1/6; p = 0.015). These findings, although limited by the small sample size, suggest that a stereotyped KCDR3 may predominantly shape anti-HCV specificity of BCRs, possibly providing a signature that may help identifying bona fide HCV-dependent LPDs.
  •  
4.
  • Arca Sedda, Manuel, et al. (författare)
  • The missing link in gravitational-wave astronomy A summary of discoveries waiting in the decihertz range
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51, s. 1427-1440
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the similar to 10-10(3) Hz band of ground-based observatories and the similar to 10(-4)-10(- 1) Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass (similar to 10(2)-10(4)M(circle dot)) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.
  •  
5.
  • Sedda, Manuel Arca, et al. (författare)
  • The missing link in gravitational-wave astronomy : discoveries waiting in the decihertz range
  • 2020
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 37:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like laser interferometer gravitational-wave observatory (LIGO), Virgo and KAGRA will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-basedlaser interferometer space antenna(LISA) will enable gravitational-wave observations of the massive black holes in galactic centres. Between ground-based observatories and LISA lies the unexplored dHz gravitational-wave frequency band. Here, we show the potential of adecihertz observatory(DO) which could cover this band, and complement discoveries made by other gravitational-wave observatories. The dHz range is uniquely suited to observation of intermediate-mass (similar to 10(2)-10(4)M(circle dot)) black holes, which may form the missing link between stellar-mass and massive black holes, offering an opportunity to measure their properties. DOs will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing dHz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity (GR) and the standard model of particle physics. Overall, a DO would answer outstanding questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy