SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carey Smith R) srt2:(2003-2004)"

Sökning: WFRF:(Carey Smith R) > (2003-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adcox, K, et al. (författare)
  • PHENIX detector overview
  • 2003
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - 0167-5087. ; 499:2-3, s. 469-479
  • Tidskriftsartikel (refereegranskat)abstract
    • The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
2.
  • Adler, SS, et al. (författare)
  • PHENIX on-line systems
  • 2003
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - 0167-5087. ; 499:2-3, s. 560-592
  • Tidskriftsartikel (refereegranskat)abstract
    • The PHENIX On-Line system takes signals from the Front End Modules (FEM) on each detector subsystem for the purpose of generating events for physics analysis. Processing of event data begins when the Data Collection Modules (DCM) receive data via fiber-optic links from the FEMs. The DCMs format and zero suppress the data and generate data packets. These packets go to the Event Builders (EvB) that assemble the events in final form. The Level-1 trigger (LVL1) generates a decision for each beam crossing and eliminates uninteresting events. The FEMs carry out all detector processing of the data so that it is delivered to the DCMs using a standard format. The FEMs also provide buffering for LVL1 trigger processing and DCM data collection. This is carried out using an architecture that is pipelined and deadtimeless. All of this is controlled by the Master Timing System (MTS) that distributes the RHIC clocks. A Level-2 trigger (LVL2) gives additional discrimination. A description of the components and operation of the PHENIX On-Line system is given and the solution to a number of electronic infrastructure problems are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
3.
  • Solan, M., et al. (författare)
  • Towards a greater understanding of pattern, scale and process in marine benthic systems: a picture is worth a thousand worms
  • 2003
  • Ingår i: Journal of Experimental Marine Biology and Ecology. - 0022-0981. ; 285, s. 313-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Historically, advances in our knowledge of benthic community structure and functioning have necessarily relied upon destructive sampling devices (grabs, cores, anchor dredges, etc.) that lose valuable contextual information in the process of sampling. In the last 40 years, instrumentation capable of measuring dynamic events and/or processes within and immediately above the seafloor has been developed that facilitates the collection of ecological information. Of these, both acoustic and optical imaging devices have played a significant role in revealing much about the physiology and behaviour of, and interactions between benthic species, and the sedimentary habitat in which they reside. While a number of reviews have separately considered the methodological and technical aspects of imaging technologies, the collective contribution that imaging has made to benthic ecology has received less attention. In this short review, we attempt to highlight key instances over the last 40 years where either acoustic or optical-based imaging techniques have provided new ecological insights and information about fine-grained sedimentary environments. In so doing, we focus on the ecological advances that have formed the precursor to current research efforts and introduce some of the latest revelations from appropriate and emerging imaging applications. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy