SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carlmark Anna) srt2:(2002-2004)"

Search: WFRF:(Carlmark Anna) > (2002-2004)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Carlmark, Anna, et al. (author)
  • Atom transfer radical polymerization from cellulose fibers at ambient temperature
  • 2002
  • In: Journal of the American Chemical Society. - WASHINGTON, DC : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 124:6, s. 900-901
  • Journal article (peer-reviewed)abstract
    • Cellulose fibers have been successfully grafted with poly(methyl acrylate) using atom transfer radical polymerization, mediated by Me6-TREN and Cu(I)Br at ambient temperature. The initially hydrophilic cellulose was first modified by reacting the hydrozyl groups with 2-bromoisobutyryl bromide whereupon methyl acrylate was grafted from the surface. The resulting polymer-grafted papers were extremely hydrophobic, θa = 133°. FT-IR analysis indicates that the amount of grafted polymer can be controlled by adding sacrificial initiator to the polymerizing system. Size exclusion chromatography of the bulk polymer revealed narrow polydispersities and a molecular weight corresponding to the ratio [M]:[I].
  •  
2.
  • Carlmark, Anna (author)
  • Atom transfer radical polymerization from multifunctional substrates
  • 2002
  • Licentiate thesis (other academic/artistic)abstract
    • Atom transfer radical polymerization (ATRP) has proven to be a powerful technique to obtain polymers with narrow polydispersities and controlled molecular weight. It also offers control over chain-ends. The technique is the most studied and utilized of thecontrolled/”living” radical polymerization techniques since a large number of monomerscan be polymerized under simple conditions. ATRP can be used to obtain polymer graftsfrom multifunctional substrates. The substrates can be either soluble (i. e. based ondendritic molecules) or insoluble (such as gold or silicon surfaces). The large number ofgrowing chains from the multifunctional substrates increases the probability of inter-and intramolecular reactions. In order to control these kinds of polymerizing systems, andsuppress side-reactions such as termination, the concentration of propagating radicalsmust be kept low. To elaborate such a system a soluble multifunctional substrate, based on 3-ethyl-3-(hydroxymethyl)oxetane, was synthesized. It was used as a macroinitiatorfor the atom transfer radical polymerisation of methyl acrylate (MA) mediated byCu(I)Br and tris(2-(dimethylamino)ethyl)amine (Me6-TREN) in ethyl acetate at room temperature. This yielded a co-polymer with a dendritic-linear architecture. Since mostsolid substrates are sensitive to the temperatures at which most ATRP polymerisations are performed, lowering the polymerization temperatures are preferred. ATRP at ambienttemperature is always more desirable since it also suppresses the formation of thermally formed polymer. The macroinitiator contained approximately 25 initiating sites, which well mimicked the conditions on a solid substrate. The polymers had low polydispersity and conversions as high as 65% were reached without loss of control. The solid substrateof choice was cellulose fibers that prior to this study not had been grafted through ATRP.As cellulose fibers a filter paper, Whatman 1, was used due to its high cellulose content.The hydroxyl groups on the surface was first reacted with 2-bromoisobutyryl bromidefollowed by grafting of MA. Essentially the same reaction conditions were used that hadbeen elaborated from the soluble substrate. The grafting yielded fibers that were very hydrophobic (contact angles>100°). By altering the sacrificial initiator-to-monomer ratiothe amount of polymer that was attached to the surface could be tailor. PMA with degreesof polymerization (DP’s) of 100, 200 and 300 were aimed. In order to control that thepolymerizations from the surface was indeed “living” a second layer of a hydrophilicmonomer, 2-hydroxymethyl methacrylate (HEMA), was grafted onto the surface. Thisdramatically changed the hydrophobic behavior of the fibers.
  •  
3.
  • Carlmark, Anna, et al. (author)
  • ATRP grafting from cellulose fibers to create block-copolymer grafts
  • 2003
  • In: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 4:6, s. 1740-1745
  • Journal article (peer-reviewed)abstract
    • Cellulose fibers, in the form of a conventional filter paper, have been modified by reacting the hydroxyl groups on the fiber surface with 2-bromoisobutyryl bromide, followed by grafting using ATRP conditions. The papers were first grafted with methyl acrylate (MA), rendering the paper very hydrophobic as reported in an earlier work. The papers were analyzed by gravimetry, FT-IR, ESCA, and AFM. To verify that the polymerization from the surface was living, a second layer of another, hydrophilic, polymer, 2-hydroxyethyl methacrylate (HEMA), was grafted upon the PMA layer, creating a block-copolymer graft from the fibers. After the layer of PHEMA had been attached, contact angle measurements were no longer possible, because of the absorbing nature of PHEMA-grafted layer. This indicates that a copolymer had indeed been formed on the surface. FT-IR showed a large increase in carbonyl content after the PHEMA-grafting, which further proves that a layer of PHEMA was attached to the PMA layer. This goes to show that the hydrophilic/ hydrophobic behavior of a cellulose surface can be tailored by the use of living/controlled radical polymerization methods such as ATRP.
  •  
4.
  • Carlmark, Anna, et al. (author)
  • ATRP of dendronized aliphatic macromonomers of generation one, two, and three
  • 2004
  • In: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 37:20, s. 7491-7496
  • Journal article (peer-reviewed)abstract
    • Atom transfer radical polymerization (ATRP) of dendritic, aliphatic macromonomers has been investigated. The macromonomers were based on acrylate functionalized 2,2-bis(methylol)propionic acid (bis-MPA) dendrons, with a flexible spacer of 10 carbons incorporated in the structure in between the polymerizable group and the dendritic wedge. Dendronized polymers of generation one, two, and three were successfully synthesized by ATRP. The polymerizations proceeded until over 80% conversion was reached, while maintaining control over polydispersity index (PDI). Plots of ln([M](0)/[M]) vs time for the polymerization of all three macromonomers showed a linear dependence, indicating that the number of propagating radicals in the reaction solution was constant throughout the reaction, when ethyl 2-bromopropionate (EBrP) was used as an initiator (i.e., radical termination was negligible). All of the resulting polymers had low PDI values and molecular weight close to the theoretical ones. The products were analyzed by H-1 and C-13 NMR spectroscopies, size exclusion chromatography (SEC), differential scanning calorimetry (DSC), and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF).
  •  
5.
  • Carlmark, Anna (author)
  • Complex Macromolecular Architectures by Atom Transfer Radical Polymerization
  • 2004
  • Doctoral thesis (other academic/artistic)abstract
    • Controlled radical polymerization has proven to be a viableroute to obtain polymers with narrow polydispersities (PDI's)and controlled molecular weights under simple reactionconditions. It also offers control over the chain-]ends of thesynthesized polymer. Atom transfer radical polymerization(ATRP) is the most studied and utilized of these techniques. Inthis study ATRP has been utilized as a tool to obtain differentcomplex macromolecular structures.In order to elaborate a system for which a multitude ofchains can polymerize in a controlled manner and in closeproximity to one another, a multifunctional initiator based onpoly(3-ethyl-3-(hydroxymethyl)oxetane was synthesized. Themacroinitiator was used to initiate ATRP of methyl acrylate(MA). The resulting dendritic-]linear copolymer hybrids hadcontrolled molecular weights and low PDI's. Essentially thesame system was used for the grafting of MA from a solidsubstrate, cellulose. A filter paper was used as cellulosesubstrate and the hydroxyl groups on the cellulose weremodified into bromo-]ester groups, known to initiate ATRP.Subsequent grafting of MA by ATRP on the cellulose made thesurface hydrophobic. The amount of polymer that was attached tothe cellulose could be tailored. In order to control that thesurface polymerization was -eliving-f and hence that thechain-]end functionality was intact, a second layer of ahydrophilic monomer, 2-hydroxyethyl methacrylate, was graftedonto the PMA- grafted cellulose. This dramatically changed thehydrophilicity of the cellulose.Dendronized polymers of generation one, two and three weresynthesized by ATRP of acrylic macromonomers based on2,2-bis(hydroxymethyl)propionic acid. In the macromonomerroute, macromonomers of each generation were polymerized byATRP. The polymerizations resulted in polymers with low PDI's.The kinetics of the reactions were investigated, and thepolymerizations followed first-order kinetics when ethyl2-bromopropionate was used as the initiator. In the-egraft-]onto-f route dendrons were divergently attached to adendronized polymer of generation one, that had been obtainedby ATRP.
  •  
6.
  • Carlmark, Anna E, et al. (author)
  • Atom transfer radical polymerization of methyl acrylate from a multifunctional initiator at ambient temperature
  • 2002
  • In: Polymer. - OXFORD, ENGLAND : ELSEVIER SCI LTD. - 0032-3861 .- 1873-2291. ; 43:15, s. 4237-4242
  • Journal article (peer-reviewed)abstract
    • A multifunctional initiator for ATRP has been synthesized by reacting a hyperbranched polyether, based on 3-ethyl-3-(hydroxymethyl)oxetane, with 2-bromo-isobutyrylbromide. The macroinitiator contained approximately 25 initiating sites per molecule. It was used for the atom transfer radical polymerization of methyl acrylate mediated by Cu(I)Br and tris(2-(dimethylamino)ethyl)amine (Me-6-TREN) in ethyl acetate at room temperature. This yielded a co-polymer with a dendritic-linear architecture. The large number of growing chains from each macromolecule increases the probability of inter-and intramolecular reactions. In order to control these kinds of polymerizing systems and prevent them from forming a gel, the concentration of propagating radicals must be kept low. The polymerizations under these conditions were well controlled. When a ratio of initiating sites-to-catalyst of 1:0.05 was used, the polymers from all of the reactions had a low polydispersity, ranging from 1.1 to 1.4. None of the polymerizations under these conditions gave gelation. Monomer conversions as high as 65% were reached while maintaining control over the polymerization. (C) 2002 Elsevier Science Ltd. All rights reserved.
  •  
7.
  • Coullerez, Geraldine, et al. (author)
  • Understanding copper-based atom-transfer radical polymerization in aqueous media
  • 2004
  • In: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 108:35, s. 7129-7131
  • Journal article (peer-reviewed)abstract
    • This study investigates the mechanism of copper(I)-mediated living atom-transfer radical polymerization (ATRP) in aqueous media. It is shown that the ATRP apparent rate constant for polymerization of methoxycapped oligo(ethylene glycol) methacrylate (OEGMA) in water (k(P)(app)) at room temperature correlates with the redox potential (E-1/2) of the copper complexes. The results are discussed along with previously published results on the kinetics for bulk polymerization of methyl acrylate at 60 degreesC with the redox potentials measured in MeCN. The faster ATRP kinetics in water can mainly be attributed to a higher equilibrium concentration of propagating radicals [W] and to solvent effects on the rate of propagation k(p). It is shown that [R*] can be calculated from the redox properties of the alkyl halide and the copper complex. The values of [R*] in MeCN/bulk and in H2O were determined to be 8.2 x 10(-8) and 6.3 x 10(-5) M, respectively. The respective kp values are in good agreement with the literature values (3.6 x 10(3) M-1 s(-1) for OEGMA in water and 2.5 x 10(3) M-1 s(-1) for methyl acrylate in bulk).
  •  
8.
  •  
9.
  • Malkoch, Michael, et al. (author)
  • Dendronized aliphatic polymers by a combination of ATRP and divergent growth
  • 2004
  • In: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 37:2, s. 322-329
  • Journal article (peer-reviewed)abstract
    • Dendronized, hybrid dendritic-linear polymers were synthesized by either the "graft-onto" route or by atom transfer radical polymerization (ATRP) of macromonomers. In both ways, the main chain was composed of acrylate repeating units and the dendrons were based on the aliphatic ester skeleton obtained from 2,2-bis(methylol)propionic acid (bis-MPA). ATRP of macromonomers was not a viable route for monomers with side chains larger than second-generation dendrons, which is why a combination of the two approaches was required to obtain polymers with larger side chains. The "graft-onto" route was conducted by reacting hydroxyl groups on the main chain with the acetonide-protected 2,2-bis(hydroxymethyl)propionic anhydride. The acetonide protecting group was easily removed by treating a solution of the polymer with an acidic ion-exchange resin. Dendronized polymers with 1-3 generation dendron side groups were synthesized with a maximum molecular weight of ca. 86 kDa. The products were analyzed by H-1 and C-13 NMR, SEC, and MALDI-TOF.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view