SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlsten C) srt2:(2001-2004)"

Sökning: WFRF:(Carlsten C) > (2001-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Erlandsson, M C, et al. (författare)
  • Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice.
  • 2003
  • Ingår i: Immunology. - 0019-2805. ; 108:3, s. 346-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Oestrogen treatment down-regulates B lymphopoiesis in the bone marrow of mice. Meanwhile it up-regulates immunoglobulin production. To understand better the oestrogen action on bone marrow male mice lacking oestrogen receptor alpha (ERalpha; ERKO mice), lacking ERbeta (BERKO mice), lacking both receptors (DERKO mice) or wild-type (wt) littermates were castrated and treated for 2.5 weeks with 30 microg/kg 17beta-oestradiol (E2) or vehicle oil as controls. The B lymphopoiesis in the bone marrow was examined by flow cytometry and mature B-cell function was studied using an ELISPOT assay enumerating the B cells in bone marrow and spleen that were actively producing immunoglobulins. In wt mice the frequency of B-lymphopoietic (B220+) cells in the bone marrow decreased from 15% to 5% upon E2 treatment. In ERKO and BERKO mice significant reduction was seen but not of the same magnitude. In DERKO mice no reduction of B lymphopoiesis was seen. In addition, our results show that E2 mediated reduction of different steps in B lymphopoiesis require only ERalpha or both receptors. In wt and BERKO mice E2 treatment resulted in significantly increased levels of B cells actively producing immunoglobulin, while in ERKO and DERKO mice no such change was seen. Similar results were found in both bone marrow and spleen. In conclusion our results clearly show that both ERalpha and ERbeta are required for complete down-regulation of B lymphopoiesis while only ERalpha is needed to up-regulate immunoglobulin production in both bone marrow and spleen.
  •  
2.
  • Erlandsson, M C, et al. (författare)
  • Raloxifene- and estradiol-mediated effects on uterus, bone and B lymphocytes in mice.
  • 2002
  • Ingår i: The Journal of endocrinology. - 0022-0795. ; 175:2, s. 319-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Raloxifene is a selective estrogen receptor modulator approved for the prevention of osteoporosis in postmenopausal women. It is selective by having estrogen-agonistic effects on bone, vessels and blood lipids while it is antagonistic on mammary and uterine tissue. Our aim was to study the agonistic and antagonistic properties of the raloxifene analogue LY117018 (LY) on uterus, bone, B lymphopoiesis and B cell function. Oophorectomized and sham-operated animals were treated with s.c. injections of equipotent anti-osteoporotic doses of 17beta-estradiol (E2) (0.1 mg/kg) or LY (3 mg/kg) or vehicle as controls. Effects on bone mineral density (BMD) were studied using peripheral quantitative computed tomography, uterine weight was examined, B lymphopoiesis was examined using flow cytometry and B cell function in bone marrow and spleen was studied by the use of an ELISPOT assay. E2 and LY had similar effects on BMD and bone marrow B lymphopoiesis, while LY had a clear antagonistic effect on endogenous estrogen in uterine tissue and no stimulating effect on the frequency of Ig-producing B cells in sham-operated animals. Our results are discussed in the context of estrogen receptor biology, relations between the immune system and bone metabolism and also with respect to the estrogen-mediated effects on rheumatic diseases.
  •  
3.
  • Islander, Ulrika, 1975, et al. (författare)
  • Influence of oestrogen receptor alpha and beta on the immune system in aged female mice.
  • 2003
  • Ingår i: Immunology. - : Wiley. - 0019-2805 .- 1365-2567. ; 110:1, s. 149-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Oestrogen has a dichotomous effect on the immune system. T and B lymphopoiesis in thymus and bone marrow is suppressed, whereas antibody production is stimulated by oestrogen. In this study the importance of the oestrogen receptors (ER) ER-alpha and ER-beta in the aged immune system was investigated in 18 months old-wild type (WT), ER-alpha (ERKO), ER-beta (BERKO) and double ER-alpha and ER-beta (DERKO) knock-out mice, and compared with 4 months old WT mice. Cell phenotypes in bone marrow, spleen and thymus, and the frequency of immunoglobulin (Ig) spot forming cells (SFC) were determined. We show here that the 17-beta-oestradiol (E2)-induced downregulation of B lymphopoietic cells in bone marrow of young ovariectomized mice can be mediated through both ER-alpha and ER-beta. However, only ER-alpha is required for the age-related increased frequency of immunoglobulin M (IgM) SFC in the bone marrow, as well as for the increased production of interleukin-10 (IL-10) from cultured splenocytes in aged mice. Furthermore, increased age in WT mice resulted in lower levels of both pro- and pre-B cells but increased frequency of IgM SFC in the bone marrow, as well as increased frequency of both IgM and IgA SFC in the spleen. Results from this study provide valuable information regarding the specific functions of ER-alpha and ER-beta in the aged immune system.
  •  
4.
  • Erlandsson, M C, et al. (författare)
  • Role of oestrogen receptors alpha and beta in immune organ development and in oestrogen-mediated effects on thymus.
  • 2001
  • Ingår i: Immunology. - : Wiley. - 0019-2805 .- 1365-2567. ; 103:1, s. 17-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Oestrogens affect the development and regulation of the immune system. To determine the role of oestrogen receptors alpha (ER-alpha) and beta (ER-beta) on the development of the immune system, male ER-alpha (ERKO) and ER-beta (BERKO) mice, as well as alphabeta-double knockout (DERKO) mice, were studied. Deletion of ER-alpha led to hypoplasia of both thymus and spleen. Interestingly, a higher frequency of immature double CD4+ CD8+ thymocytes was found in ER-alpha(-) mice compared with ER-alpha(+) mice. Female oophorectomized BERKO mice given oestradiol (E2) displayed a similar degree of thymic atrophy compared with the wild-type strain but showed only limited involution of thymus cortex and no alteration of thymic CD4/CD8 phenotype expression. Our data demonstrate that expression of ER-alpha, but not ER-beta, is mandatory in males for development of full-size thymus and spleen, whereas expression of ER-beta is required for E2-mediated thymic cortex atrophy and thymocyte phenotype shift in females. A potential background for the above findings may be down-regulated activity in the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis in males lacking ER-alpha and suppressed sensitivity of females lacking ER-beta to E2-mediated suppression of IGF-1.
  •  
5.
  •  
6.
  • Lindberg, Marie K, 1975, et al. (författare)
  • Estrogen receptor alpha, but not estrogen receptor beta, is involved in the regulation of the OPG/RANKL (osteoprotegerin/receptor activator of NF-kappa B ligand) ratio and serum interleukin-6 in male mice.
  • 2001
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 171:3, s. 425-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important for the male skeleton. Osteoprotegerin (OPG), receptor activator of NF-kappa B ligand (RANKL), interleukin-6 (IL-6), IL-1 and tumor necrosis factor alpha (TNFalpha) have been suggested to be involved in the skeletal effects of estrogen. We treated orchidectomized mice with estradiol for 2 weeks and observed a 143% increase in the trabecular bone mineral density of the distal metaphysis of femur that was associated with a decreased OPG/RANKL mRNA ratio in vertebral bone. A similar decreased OPG/RANKL ratio was also seen after estrogen treatment of ovariectomized female mice. The effect of estrogen receptor (ER) inactivation on the OPG/RANKL ratio was dissected by using intact male mice lacking ER alpha (ERKO), ER beta (BERKO) or both receptors (DERKO). The expression of OPG was increased in ERKO and DERKO but not in BERKO male mice, resulting in an increased OPG/RANKL ratio. Furthermore, serum levels of IL-6 and tartrate-resistant acid phosphatase 5b (TRAP 5b) were decreased in ERKO and DERKO, but not in BERKO male mice. These results demonstrate that ER alpha, but not ER beta, is involved in the regulation of the vertebral OPG/RANKL ratio, serum levels of IL-6 and TRAP 5b in male mice.
  •  
7.
  • Lindberg, Marie K, 1975, et al. (författare)
  • Estrogen receptor specificity for the effects of estrogen in ovariectomized mice.
  • 2002
  • Ingår i: The Journal of endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 174:2, s. 167-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), alpha and beta. Three-month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 micro g/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERalpha activity or represent an ERalpha/ERbeta-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERalpha mediated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy