SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carruthers P.) srt2:(2010-2014)"

Sökning: WFRF:(Carruthers P.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmes, Michael V., et al. (författare)
  • Secretory Phospholipase A(2)-IIA and Cardiovascular Disease
  • 2013
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier. - 0735-1097 .- 1558-3597. ; 62:21, s. 1966-1976
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives This study sought to investigate the role of secretory phospholipase A(2) (sPLA(2))-IIA in cardiovascular disease. less thanbrgreater than less thanbrgreater thanBackground Higher circulating levels of sPLA(2)-IIA mass or sPLA(2) enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA(2) inhibitor (varespladib) was stopped prematurely for lack of efficacy. less thanbrgreater than less thanbrgreater thanMethods We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA(2)-IIA isoenzyme, as an instrumental variable. less thanbrgreater than less thanbrgreater thanResults PLA2G2A rs11573156 C allele associated with lower circulating sPLA(2)-IIA mass (38% to 44%) and sPLA(2) enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA(2)-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE. less thanbrgreater than less thanbrgreater thanConclusions Reducing sPLA(2)-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
  •  
2.
  •  
3.
  • Burdett, H. L., et al. (författare)
  • Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa
  • 2014
  • Ingår i: Marine Biology. - : Springer. - 0025-3162 .- 1432-1793. ; 161:7, s. 1499-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant warming and acidification of the oceans is projected to occur by the end of the century. CO2 vents, areas of upwelling and downwelling, and potential leaks from carbon capture and storage facilities may also cause localised environmental changes, enhancing or depressing the effect of global climate change. Cold-water coral ecosystems are threatened by future changes in carbonate chemistry, yet our knowledge of the response of these corals to high temperature and high CO2 conditions is limited. Dimethylsulphoniopropionate (DMSP), and its breakdown product dimethylsulphide (DMS), are putative antioxidants that may be accumulated by invertebrates via their food or symbionts, although recent research suggests that some invertebrates may also be able to synthesise DMSP. This study provides the first information on the impact of high temperature (12 A degrees C) and high CO2 (817 ppm) on intracellular DMSP in the cold-water coral Lophelia pertusa from the Mingulay Reef Complex, Scotland (56A degrees 49'N, 07A degrees 23'W), where in situ environmental conditions are meditated by tidally induced downwellings. An increase in intracellular DMSP under high CO2 conditions was observed, whilst water column particulate DMS + DMSP was reduced. In both high temperature treatments, intracellular DMSP was similar to the control treatment, whilst dissolved DMSP + DMS was not significantly different between any of the treatments. These results suggest that L. pertusa accumulates DMSP from the surrounding water column; uptake may be up-regulated under high CO2 conditions, but mediated by high temperature. These results provide new insight into the biotic control of deep-sea biogeochemistry and may impact our understanding of the global sulphur cycle, and the survival of cold-water corals under projected global change.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy