SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carvalho Eugenia) srt2:(2000-2004)"

Sökning: WFRF:(Carvalho Eugenia) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carvalho, Eugénia, 1967, et al. (författare)
  • Impaired phosphorylation and insulin-stimulated translocation to the plasma membrane of protein kinase B/Akt in adipocytes from Type II diabetic subjects
  • 2000
  • Ingår i: Diabetologia. - 0012-186X. ; 43:9, s. 1107-15
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: To examine protein kinase B/Akt distribution and phosphorylation in response to insulin in different subcellular fractions of human fat cells from healthy subjects and subjects with Type II (non-insulin-dependent) diabetes mellitus. METHODS: We prepared subcellular fractions of plasma membranes (PM), low density microsomes and cytosol and examined gene and protein expression as well as serine and threonine phosphorylation in response to insulin. RESULTS: Protein kinase B/Akt mRNA as well as total protein kinase B/Akt protein in whole-cell lysate and cytosol were similar in both groups. Insulin increased protein kinase B/Akt translocation to the the plasma membrane about twofold [(p < 0.03) in non-diabetic cells but this effect was impaired in diabetic cells (approximately 30%; p > 0.1)]. In both groups, protein kinase B/Akt threonine phosphorylation considerably increased in low density microsomes and cytosol whereas serine phosphorylation was predominant in the plasma membrane. Phosphatidylinositol-dependent kinase 1, which partially activates and phosphorylates protein kinase B/Akt on the specific threonine site, was predominant in cytosol but it was also recovered in low density microsomes. Serine phosphorylation in response to insulin was considerably reduced (50-70 %; p < 0.05) in diabetic cells but threonine phosphorylation was less reduced (approximately 20%). Wortmannin inhibited these effects of insulin supporting a role for PI3-kinase activation. CONCLUSION/INTERPRETATION: Insulin stimulates a differential subcellular pattern of phosphorylation of protein kinase B/Akt. Furthermore, insulin-stimulated translocation of protein kinase B/Akt to the plasma membrane, where serine phosphorylation and full activation occurs, is impaired in Type II diabetes. Threonine phosphorylation was much less reduced. This discrepancy may be related to differential activation of phosphatidylinositol 3-kinase in the different subcellular compartments and phosphatidylinositol-dependent kinase 1 having high affinity for phosphatidylinositol phosphate 3.
  •  
2.
  •  
3.
  • Yang, Xiao Lin, 1955, et al. (författare)
  • Evidence of impaired adipogenesis in insulin resistance
  • 2004
  • Ingår i: Biochem Biophys Res Commun. - : Elsevier BV. - 0006-291X. ; 317:4, s. 1045-51
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the roles of adipose tissue and skeletal muscle in the early development of insulin resistance, we characterized gene expression profiles of isolated adipose cells and skeletal muscle of non-diabetic insulin-resistant first-degree relatives of type 2 diabetic patients using oligonucleotide microarrays. About 600 genes and expressed sequence tags, which displayed a gene expression pattern of cell proliferation, were differentially expressed in the adipose cells. The differentially expressed genes in the skeletal muscle were mostly related to the cellular signal transduction and transcriptional regulation. To verify the microarray findings, we studied expression of genes participating in adipogenesis. The expression of Wnt signaling genes, WNT1, FZD1, DVL1, GSK3beta, beta-catenin, and TCF1, and adipogenic transcription factors, C/EBPalpha and beta and delta, PPARgamma, and SREBP-1, was reduced in the adipose tissue. The expression of adipose-specific proteins related to terminal differentiation, such as adiponectin and aP2, was reduced both in the adipose tissue and in the adipose cells isolated from portions of the biopsies. The adipose cells were enlarged in the insulin-resistant relatives and the cell size inversely correlated with the expression of the Wnt signaling genes, adiponectin, and aP2. Our findings suggest that insulin resistance is associated with an impaired adipogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy