SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cataldi G.) srt2:(2015-2019)"

Sökning: WFRF:(Cataldi G.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Colavita, F, et al. (författare)
  • EBOLA Ag K-SeT rapid test: field evaluation in Sierra Leone
  • 2018
  • Ingår i: Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. - : Elsevier BV. - 1469-0691. ; 24:6, s. 653-657
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Brandeker, Alexis, et al. (författare)
  • Herschel detects oxygen in the beta Pictoris debris disk
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • The young star beta Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution.
  •  
5.
  • Cataldi, Gianni, et al. (författare)
  • ALMA Resolves C i Emission from the β Pictoris Debris Disk
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 861:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The debris disk around β Pictoris is known to contain gas. Previous ALMA observations revealed a CO belt at ∼85 au with a distinct clump, interpreted as a location of enhanced gas production. Photodissociation converts CO into C and O within ∼50 a. We resolve C i emission at 492 GHz using ALMA and study its spatial distribution. C i shows the same clump as seen for CO. This is surprising, as C is expected to quickly spread in azimuth. We derive a low C mass (between 5 ×10-4and 3.1 ×10-3), indicating that gas production started only recently (within ∼5000 a). No evidence is seen for an atomic accretion disk inward of the CO belt, perhaps because the gas did not yet have time to spread radially. The fact that C and CO share the same asymmetry argues against a previously proposed scenario where the clump is due to an outward-migrating planet trapping planetesimals in a resonance, nor can the observations be explained by an eccentric planetesimal belt secularly forced by a planet. Instead, we suggest that the dust and gas disks should be eccentric. Such a configuration, we further speculate, might be produced by a recent tidal disruption event. Assuming that the disrupted body has had a CO mass fraction of 10%, its total mass would be 3 MMoon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy