SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ceder Yvonne) srt2:(2020-2024)"

Sökning: WFRF:(Ceder Yvonne) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ivkovic, Tina Catela, et al. (författare)
  • Functional In Vivo Screening Identifies microRNAs Regulating Metastatic Dissemination of Prostate Cancer Cells to Bone Marrow
  • 2023
  • Ingår i: Cancers. - 2072-6694. ; 15:15, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Distant metastasis is the major cause of cancer-related deaths in men with prostate cancer (PCa). An in vivo functional screen was used to identify microRNAs (miRNAs) regulating metastatic dissemination of PCa cells. PC3 cells transduced with pooled miRZiP™ lentivirus library (anti-miRNAs) were injected intraprostatic to 13 NSG mice followed by targeted barcode/anti-miR sequencing. PCa cells in the primary tumours showed a homogenous pattern of anti-miRNAs, but different anti-miRNAs were enriched in liver, lung, and bone marrow, with anti-miR-379 highly enriched in the latter. The bone metastasis-promoting phenotype induced by decreased miR-379 levels was also confirmed in a less metastatic PCa cell line, 22Rv1, where all mice injected intracardially with anti-miR-379-22Rv1 cells developed bone metastases. The levels of miR-379 were found to be lower in bone metastases compared to primary tumours and non-cancerous prostatic tissue in a patient cohort. In vitro functional studies suggested that the mechanism of action was that reduced levels of miR-379 gave an increased colony formation capacity in conditions mimicking the bone microenvironment. In conclusion, our data suggest that specific miRNAs affect the establishment of primary tumours and metastatic dissemination, with a loss of miR-379 promoting metastases in bone.
  •  
2.
  • Ku, Anson, et al. (författare)
  • High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer
  • 2021
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular profiling of extracellular vesicles (EVs) offers novel opportunities for diagnostic applications, but the current major obstacle for clinical translation is the lack of efficient, robust, and reproducible isolation methods. To bridge that gap, we developed a microfluidic, non-contact, and low-input volume compatible acoustic trapping technology for EV isolation that enabled downstream small RNA sequencing. In the current study, we have further automated the acoustic microfluidics-based EV enrichment technique that enables us to serially process 32 clinical samples per run. We utilized the system to enrich EVs from urine collected as the first morning void from 207 men referred to 10-core prostate biopsy performed the same day. Using automated acoustic trapping, we successfully enriched EVs from 199/207 samples (96%). After RNA extraction, size selection, and library preparation, a total of 173/199 samples (87%) provided sufficient materials for next-generation sequencing that generated an average of 2 × 106 reads per sample mapping to the human reference genome. The predominant RNA species identified were fragments of long RNAs such as protein coding and retained introns, whereas small RNAs such as microRNAs (miRNA) accounted for less than 1% of the reads suggesting that partially degraded long RNAs out-competed miRNAs during sequencing. We found that the expression of six miRNAs was significantly different (Padj < 0.05) in EVs isolated from patients found to have high grade prostate cancer [ISUP 2005 Grade Group (GG) 4 or higher] compared to those with GG3 or lower, including those with no evidence of prostate cancer at biopsy. These included miR-23b-3p, miR-27a-3p, and miR-27b-3p showing higher expression in patients with GG4 or high grade prostate cancer, whereas miR-1-3p, miR-10a-5p, and miR-423-3p had lower expression in the GG4 PCa cases. Cross referencing our differentially expressed miRNAs to two large prostate cancer datasets revealed that the putative tumor suppressors miR-1, miR-23b, and miR-27a are consistently deregulated in prostate cancer. Taken together, this is the first time that our automated microfluidic EV enrichment technique has been found to be capable of enriching EVs on a large scale from 900 μl of urine for small RNA sequencing in a robust and disease discriminatory manner.
  •  
3.
  • Magnusson, Cecilia, et al. (författare)
  • Acoustic Enrichment of Heterogeneous Circulating Tumor Cells and Clusters from Metastatic Prostate Cancer Patients
  • 2024
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 96:18, s. 6914-6921
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on the microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality.METHODS: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility), resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry.RESULTS: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM +, Cytokeratin +, DAPI +, CD45 -/CD66b -) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogeneous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding a higher number of CTCs using acoustophoresis. CONCLUSION: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables the sensitive label-free enrichment of cells with epithelial phenotypes in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.
  •  
4.
  • Magnusson, Cecilia, et al. (författare)
  • Acoustic enrichment of heterogenous circulating tumor cells and clusters from patients with metastatic prostate cancer
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality.METHODS: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility) resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry.RESULTS: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM + , Cytokeratin + , DAPI + , CD45 - /CD66b - ) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogenous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC-clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding higher number of CTCs using acoustophoresis. CONCLUSION: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC-clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables sensitive label-free enrichment of cells with epithelial phenotype in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.
  •  
5.
  • Undvall Anand, Eva, et al. (författare)
  • Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood
  • 2021
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 93:51, s. 17076-17085
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an unmet clinical need to extract living circulating tumor cells (CTCs) for functional studies and in vitro expansion to enable drug testing and predict responses to therapy in metastatic cancer. Here, we present a novel two-step acoustophoresis (A2) method for isolation of unfixed, viable cancer cells from red blood cell (RBC) lysed whole blood. The A2 method uses an initial acoustofluidic preseparation step to separate cells based on their acoustic mobility. This acoustofluidic step enriches viable cancer cells in a central outlet, but a significant number of white blood cells (WBCs) remain in the central outlet fraction due to overlapping acoustophysical properties of these viable cells. A subsequent purging step was employed to remove contaminating WBCs through negative selection acoustophoresis with anti-CD45-functionalized negative acoustic contrast particles. We processed 1 mL samples of 1:1 diluted RBC lysed whole blood mixed with 10 000 DU145 cells through the A2 method. Additional experiments were performed using 1000 DU145 cells spiked into 1.5 × 106 WBCs in 1 mL of buffer to further elucidate the dynamic range of the method. Using samples with 10 000 DU145 cells, we obtained 459 ± 188-fold depletion of WBC and 42% recovery of viable cancer cells. Based on spiked samples with 1000 DU145 cells, our cancer cell recovery was 28% with 247 ± 156-fold WBC depletion corresponding to a depletion efficacy of ≥99.5%. The novel A2 method provides extensive elimination of WBCs combined with the gentle recovery of viable cancer cells suitable for downstream functional analyses and in vitro culture.
  •  
6.
  • Voss, Gjendine, et al. (författare)
  • Functional consequences of A-to-I editing of miR-379 in prostate cancer cells
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer is the predominant cause of cancer in men, but there is still a lack of biomarkers and treatments for metastatic spread. The initial promise of microRNAs to provide avenues to solve these problems has been dampened by the realisation that microRNAs co-exist in multiple functionally distinct isoforms, for example due to A-to-I editing. We recently found that A-to-I-editing of microRNA-379 (miR-379) was associated with prostate cancer, and that only the unedited isoform was negatively correlated with aggressive disease. Here, we set out to decipher the biological effects of unedited and edited miR-379 in prostate cancer cells. After transfection of four different prostate cancer cell lines with isoform-specific miR-379 mimics, we performed assays for cell growth, colony formation, migration, cell–cell adhesion, and analysed epithelial–mesenchymal transition (EMT) and stemness markers. We found that unedited miR-379 affected cell growth, with a promoting function in androgen receptor (AR)-negative cells and an inhibiting effect in AR-positive cells. This is supported by our in silico analysis that found unedited miR-379 targets are predicted to be predominantly involved in cellular proliferation whereas the targets of edited miR-379 are not. We further found that both miR-379 isoforms could promote colony formation, migration, and cell–cell adhesion. Overall, our data suggests that editing of miR-379 attenuates the growth-suppressive function of unedited miR-379 in androgen-sensitive prostate cancer cells, thereby promoting tumor growth.
  •  
7.
  • Voss, Gjendine, et al. (författare)
  • Quantification of microRNA editing using two-tailed RT-qPCR for improved biomarker discovery
  • 2021
  • Ingår i: RNA. - : Cold Spring Harbor Laboratory. - 1355-8382 .- 1469-9001. ; 27:11, s. 1412-1424
  • Tidskriftsartikel (refereegranskat)abstract
    • Even though microRNAs have been viewed as promising biomarkers for years, their clinical implementation is still lagging far behind. This is in part due to the lack of RT-qPCR technologies that can differentiate between microRNA isoforms. For example, A-to-I editing of microRNAs through adenosine deaminase acting on RNA (ADAR) enzymes can affect their expression levels and functional roles, but editing isoform-specific assays are not commercially available. Here, we describe RT-qPCR assays that are specific for editing isoforms, using microRNA-379 (miR-379) as a model. The assays are based on two-tailed RT-qPCR, and we show them to be compatible both with SYBR Green and hydrolysis-based chemistries, as well as with both qPCR and digital PCR. The assays could readily detect different miR 379 editing isoforms in various human tissues as well as changes of editing levels in ADAR-overexpressing cell lines. We found that the miR-379 editing frequency was higher in prostate cancer samples compared to benign prostatic hyperplasia samples. Furthermore, decreased expression of unedited miR-379, but not edited miR-379, was associated with treatment resistance, metastasis and shorter overall survival. Taken together, this study presents the first RT-qPCR assays that were demonstrated to distinguish A-to-I-edited microRNAs, and shows that they can be useful in the identification of biomarkers that previously have been masked by other isoforms.
  •  
8.
  • Voss, Gjendine, et al. (författare)
  • Regulation of cell-cell adhesion in prostate cancer cells by microRNA-96 through upregulation of E-Cadherin and EpCAM
  • 2020
  • Ingår i: Carcinogenesis. - : Oxford University Press. - 0143-3334 .- 1460-2180. ; 41:7, s. 865-874
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell-cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell-cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell-cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.
  •  
9.
  • Voss, Gjendine, et al. (författare)
  • Two-Tailed RT-qPCR for the Quantification of A-to-I-Edited microRNA Isoforms
  • 2023
  • Ingår i: Current protocols. - : Wiley. - 2691-1299. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs are short non-coding RNAs with important functions in the regulation of gene expression in healthy and diseased tissues. To optimally utilize the biological and clinical information that is contained in microRNA expression levels, tools for their accurate and cost-effective quantification are needed. While the standard method, qPCR, allows for quick and cheap microRNA quantification, specificity is limited due to the short lengths of microRNAs and the high similarity between closely related microRNA family members. A-to-I editing can further diversify the microRNA pool by altering individual nucleotides. There is currently a lack of protocols for the accurate quantification of A-to-I-edited microRNA isoforms using qPCR. Here, we describe a protocol to quantify microRNA editing isoforms using two-tailed RT-qPCR, with either SYBR Green or hydrolysis probes. The user will perform reverse transcription of RNA samples, generate standard curves, and quantify the resulting cDNA in the following qPCR step. We also give guidelines for primer design and for the evaluation of assays using synthetic oligonucleotides. These tools are expected to be transferable to any A-to-I-edited microRNA and its isoforms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy