SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chagin Andrei S.) srt2:(2020-2024)"

Sökning: WFRF:(Chagin Andrei S.) > (2020-2024)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Batkovskyte, D., et al. (författare)
  • Al-Gazali Skeletal Dysplasia Constitutes the Lethal End of ADAMTSL2-Related Disorders
  • 2023
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 38:5, s. 692-706
  • Tidskriftsartikel (refereegranskat)abstract
    • Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located.
  •  
2.
  • Chen, Yin Huai, et al. (författare)
  • Absence of GP130 cytokine receptor signaling causes extended Stüve-Wiedemann syndrome
  • 2020
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 217:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The gene IL6ST encodes GP130, the common signal transducer of the IL-6 cytokine family consisting of 10 cytokines. Previous studies have identified cytokine-selective IL6ST defects that preserve LIF signaling. We describe three unrelated families with at least five affected individuals who presented with lethal Stüve-Wiedemann-like syndrome characterized by skeletal dysplasia and neonatal lung dysfunction with additional features such as congenital thrombocytopenia, eczematoid dermatitis, renal abnormalities, and defective acute-phase response. We identified essential loss-of-function variants in IL6ST (a homozygous nonsense variant and a homozygous intronic splice variant with exon skipping). Functional tests showed absent cellular responses to GP130-dependent cytokines including IL-6, IL-11, IL-27, oncostatin M (OSM), and leukemia inhibitory factor (LIF). Genetic reconstitution of GP130 by lentiviral transduction in patient-derived cells reversed the signaling defect. This study identifies a new genetic syndrome caused by the complete lack of signaling of a whole family of GP130-dependent cytokines in humans and highlights the importance of the LIF signaling pathway in pre- and perinatal development.
  •  
3.
  • Trompet, Dana, 1993, et al. (författare)
  • Stimulation of skeletal stem cells in the growth plate promotes linear bone growth
  • 2024
  • Ingår i: JCI INSIGHT. - 2379-3708. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1(fl/fl )tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling This opens therapeutic possibilities for the treatment of differences in leg length.
  •  
4.
  • Chagin, Andrei S., 1976, et al. (författare)
  • Dual stem-cell populations interact in the skull
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 621, s. 698-699
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Two types of stem cell produce similar progeny cells in the skull. [Figure not available: see fulltext.].
  •  
5.
  • Chagin, Andrei S., 1976, et al. (författare)
  • The Origin and Fate of Chondrocytes: Cell Plasticity in Physiological Setting
  • 2023
  • Ingår i: Current Osteoporosis Reports. - 1544-1873 .- 1544-2241. ; 21:6, s. 815-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose of ReviewHere, we discuss the origin of chondrocytes, their destiny, and their plasticity in relationship to bone growth, articulation, and formation of the trabeculae. We also consider these processes from a biological, clinical, and evolutionary perspective.Recent FindingsChondrocytes, which provide the template for the formation of most bones, are responsible for skeletal growth and articulation during postnatal life. In recent years our understanding of the fate of these cells has changed dramatically. Current evidence indicates a paradoxical situation during skeletogenesis, with some cells of mesenchymal condensation differentiating directly into osteoblasts, whereas others of the same kind give rise to highly similar osteoblasts via a complex process of differentiation involving several chondrocyte intermediates. The situation becomes even more paradoxical during postnatal growth when stem cells in the growth plate produce differentiated, functional progenies, which thereafter presumably dedifferentiate into another type of stem cell.SummarySuch a remarkable transition from one cell type to another under postnatal physiological conditions provides a fascinating example of cellular plasticity that may have valuable clinical implications.
  •  
6.
  • Kaucka, M., et al. (författare)
  • Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates. Normal limb development relies on synchronized formation of cartilage and bone. Here, the authors show that in salamander limb regeneration these processes are decoupled: ossification occurs after the final size of regenerating cartilage is reached, allowing fast regeneration and leading to bulky bones.
  •  
7.
  • Kurenkova, A. D., et al. (författare)
  • Notch Signaling Regulates the Chondrogenic Potential of Both Articular Chondrocytes and Their Progenitors During Expansion
  • 2023
  • Ingår i: Stem Cells. - 1066-5099. ; 41:6, s. 658-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage has a limited capacity for self-repair and clinical approaches to cartilage regeneration are needed. The only such approach developed to date involves an expansion of primary autologous chondrocytes in culture, followed by their reimplantation into a cartilage defect. However, because of the formation of fibrocartilage instead of hyaline cartilage, the outcome is often not satisfactory. It happens due to the de-differentiation of chondrocytes during the expansion step. Indeed, articular chondrocytes are non-proliferative and require partial or complete dedifferentiation before actively proliferating. In recent years stem/progenitor cells in articular cartilage (artSPCs) have been described. These cells maintain their own population and renew articular cartilage in sexually mature mice. artSPCs can, theoretically, be superior to chondrocytes, for repairing damaged cartilage. Accordingly, here, we searched for conditions that allow rapid expansion of both artSPCs and chondrocytes with simultaneous preservation of their ability to form hyaline cartilage. Among the modulators of Wnt, Notch, and FGF signaling and of cell adhesion screened, only fibronectin and modulators of the Notch pathway promoted the rapid expansion of artSPCs. Surprisingly, both inhibition and activation of the pathway had this effect. However, only inhibition of Notch during expansion facilitated the chondrogenic potential of both artSPCs and primary chondrocytes, whereas activation of this pathway abrogated this potential entirely. This effect was the same for murine and human cells. Our present observations indicate that Notch signaling is the major regulator of the chondrogenic capacity of both artSPCs and chondrocytes during their expansion.
  •  
8.
  • Trompet, Dana, 1993, et al. (författare)
  • Skeletal stem and progenitor cells in bone development and repair
  • 2024
  • Ingår i: JOURNAL OF BONE AND MINERAL RESEARCH. - 0884-0431 .- 1523-4681. ; 39:6, s. 633-654
  • Forskningsöversikt (refereegranskat)abstract
    • Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine. Skeletal progenitor cells are crucial for bone development and growth, as they provide the cellular building blocks (chondrocytes and osteoblasts) that form the cartilage and bone tissues that the skeleton is composed of. In adult life, the occurrence of a bone fracture reactivates similar tissue-forming mechanisms, starting with the trauma triggering various postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect to divide and migrate. These cells subsequently generate functional fracture-repairing cells by differentiating into mature chondrocytes and/or osteoblasts. In recent years, the combined use of various advanced research approaches and new techniques has strongly improved our insights into the origin, identity, fates, and roles of developmental and reparative skeletal stem cells and progenitor subsets. Concomitantly, this research also unveiled considerable complexity in their dynamics, diversity, hierarchies, and relationships, which is incompletely understood at present. In this review, we discuss the state of the field and the newest discoveries in the identity and roles of skeletal stem and progenitor cells mediating bone development, growth, and repair. Further research on these cell populations, including determining their exact nature, fate, and functioning, and how they can be harvested and regulated, is critical to develop new treatments for non-healing fractures. Graphical Abstract
  •  
9.
  • Xie, Meng, et al. (författare)
  • Secondary ossification center induces and protects growth plate structure
  • 2020
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.
  •  
10.
  • Xie, Meng, et al. (författare)
  • The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy