SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chand P) srt2:(2015-2019)"

Sökning: WFRF:(Chand P) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, H., et al. (författare)
  • H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830–211
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Tidskriftsartikel (refereegranskat)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
2.
  • Abdalla, H., et al. (författare)
  • HESS observations of the flaring gravitationally lensed galaxy PKS 1830-211
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Tidskriftsartikel (refereegranskat)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
3.
  • Abdalla, H., et al. (författare)
  • Particle transport within the pulsar wind nebula HESS J1825-137
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Aims. The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) gamma-ray properties of the nebula. Methods. The nebula emission is revealed to extend out to 1.5 degrees from the pulsar, similar to 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of similar to 100 pc, potentially the largest gamma-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R proportional to E alpha with alpha = -0.29 +/- 0.04(stat) +/- 0.05(sys) disfavours a pure diffusion scenario for particle transport within the nebula. The total gamma-ray flux of the nebula above 1 TeV is found to be (1.12 +/- 0.03(stat) +/- 0.25(sys)) +/- 10(-11) cm(-2) s(-1), corresponding to similar to 64% of the flux of the Crab nebula. Results. HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE gamma-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.
  •  
4.
  • Abdalla, H., et al. (författare)
  • HESS and Suzaku observations of the Vela X pulsar wind nebula
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.
  •  
5.
  • Abdalla, H., et al. (författare)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
6.
  • Abdalla, H., et al. (författare)
  • Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
  •  
7.
  • Abdalla, H., et al. (författare)
  • Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with HESS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten super- novae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of similar to 10(-13) cm(-)(2)s(-1) are established, corresponding to upper limits on the luminosities in the range similar to 2 x 10(39) to similar to 1 x 10(42) erg s(-1). These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between similar to 2 x 10(-5) and similar to 2 x 10(-3) M-circle dot yr(-1) under reasonable assumptions on the particle acceleration parameters.
  •  
8.
  • Chattopadhyay, Tanmoy, et al. (författare)
  • Prompt Emission Polarimetry of Gamma-Ray Bursts with the AstroSat CZT Imager
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 884:2
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray and gamma-ray polarization measurements of the prompt emission of gamma-ray bursts (GRBs) are believed to be extremely important for testing various models of GRBs. So far, the available measurements of hard X-ray polarization of GRB prompt emission have not significantly constrained the GRB models, particularly because of the difficulty of measuring polarization in these bands. The CZT Imager (CZTI) on board AstroSat is primarily an X-ray spectroscopic instrument that also works as a wide-angle GRB monitor due to the transparency of its support structure above 100 keV. It also has experimentally verified polarization measurement capability in the energy range 100-300 keV and thus provides a unique opportunity to attempt spectropolarimetric studies of GRBs. Here we present the polarization data for the brightest 11 GRBs detected by CZTI during its first year of operation. Among these, five GRBs show polarization signatures with greater than or similar to 3 sigma, and one GRB shows 2 sigma detection significance. We place upper limits for the remaining five GRBs. We provide details of the various tests performed to validate our polarization measurements. While it is difficult yet to discriminate between various emission models with the current sample alone, the large number of polarization measurements that CZTI expects to gather in its minimum lifetime of five years should help to significantly improve our understanding of the prompt emission.
  •  
9.
  • Guan, Jikui, et al. (författare)
  • The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN
  • 2016
  • Ingår i: DMM Disease Models and Mechanisms. - : The Company of Biologists. - 1754-8403 .- 1754-8411. ; 9:9, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predictedto exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse modelof high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. © 2016. Published by The Company of Biologists Ltd.
  •  
10.
  • Mishra, Yogesh, et al. (författare)
  • Active-site plasticity revealed in the asymmetric dimer of AnPrx6 the 1-Cys peroxiredoxin and molecular chaperone from Anabaena sp. PCC 7120
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxiredoxins (Prxs) are vital regulators of intracellular reactive oxygen species levels in all living organisms. Their activity depends on one or two catalytically active cysteine residues, the peroxidatic Cys (C-P) and, if present, the resolving Cys (C-R). A detailed catalytic cycle has been derived for typical 2-Cys Prxs, however, little is known about the catalytic cycle of 1-Cys Prxs. We have characterized Prx6 from the cyanobacterium Anabaena sp. strain PCC7120 (AnPrx6) and found that in addition to the expected peroxidase activity, AnPrx6 can act as a molecular chaperone in its dimeric state, contrary to other Prxs. The AnPrx6 crystal structure at 2.3 angstrom resolution reveals different active site conformations in each monomer of the asymmetric obligate homo-dimer. Molecular dynamic simulations support the observed structural plasticity. A FSH motif, conserved in 1-Cys Prxs, precedes the active site PxxxTxxCp signature and might contribute to the 1-Cys Prx reaction cycle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy