SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chapman Matthew R) srt2:(2010-2014)"

Sökning: WFRF:(Chapman Matthew R) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lloyd, B., et al. (författare)
  • Overview of physics results from MAST
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9, s. 094013 (paper no.)-
  • Tidskriftsartikel (refereegranskat)abstract
    • Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%.
  •  
2.
  • Hammer, Neal D, et al. (författare)
  • The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation
  • 2012
  • Ingår i: Journal of Molecular Biology. - : Elsevier. - 0022-2836 .- 1089-8638. ; 422:3, s. 376-389
  • Tidskriftsartikel (refereegranskat)abstract
    • Curli are functional amyloids produced by enteric bacteria. The major curli fiber subunit, CsgA, self-assembles into an amyloid fiber in vitro. The minor curli subunit protein, CsgB, is required for CsgA polymerization on the cell surface. Both CsgA and CsgB are composed of five predicted β–strand-loop-β–strand-loop repeating units that feature conserved glutamine and asparagine residues. Because of this structural homology, we proposed that CsgB might form an amyloid template that initiates CsgA polymerization on the cell surface. To test this model, we purified wild-type CsgB, and found that it self-assembled into amyloid fibers in vitro. Preformed CsgB fibers seeded CsgA polymerization as did soluble CsgB added to the surface of cells secreting soluble CsgA. To define the molecular basis of CsgB nucleation, we generated a series of mutants that removed each of the five repeating units. Each of these CsgB deletion mutants was capable of self-assembly in vitro. In vivo, membrane-localized mutants lacking the 1st, 2nd or 3rd repeating units were able to convert CsgA into fibers. However, mutants missing either the 4th or 5th repeating units were unable to complement a csgB mutant. These mutant proteins were not localized to the outer membrane, but were instead secreted into the extracellular milieu. Synthetic CsgB peptides corresponding to repeating units 1, 2 and 4 self assembled into ordered amyloid polymers, while peptides corresponding to repeating units 3 and 5 did not, suggesting that there are redundant amyloidogenic domains in CsgB. Our results suggest a model where the rapid conversion of CsgB from unstructured protein to a β-sheet-rich amyloid template anchored to the cell surface is mediated by the C-terminal repeating units.
  •  
3.
  • Andersson, Emma K., et al. (författare)
  • Modulation of Curli Assembly and Pellicle Biofilm Formation by Chemical and Protein Chaperones
  • 2013
  • Ingår i: Chemistry and Biology. - : Elsevier. - 1074-5521 .- 1879-1301. ; 20:10, s. 1245-1254
  • Tidskriftsartikel (refereegranskat)abstract
    • Enteric bacteria assemble functional amyloid fibers, curli, on their surfaces that share structural and biochemical properties with disease-associated amyloids. Here, we test rationally designed 2-pyridone compounds for their ability to alter amyloid formation of the major curli subunit CsgA. We identified several compounds that discourage CsgA amyloid formation and several compounds that accelerate CsgA amyloid formation. The ability of inhibitor compounds to stop growing CsgA fibers was compared to the same property of the CsgA chaperone, CsgE. CsgE blocked CsgA amyloid assembly and arrested polymerization when added to actively polymerizing fibers. Additionally, CsgE and the 2-pyridone inhibitors prevented biofilm formation by Escherichia coli at the air-liquid interface of a static culture. We demonstrate that curli amyloid assembly and curli-dependent biofilm formation can be modulated not only by protein chaperones, but also by "chemical chaperones."
  •  
4.
  • Zhou, Yizhou, et al. (författare)
  • Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms
  • 2012
  • Ingår i: Journal of Biological Chemistry. - ROCKVILLE PIKE, BETHESDA, MD : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 287:42, s. 35092-35103
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimer's, Parkinson's and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2 and Citrobacter koseri were able to cross-seed in vitro. The polymerization of E. coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA secreted from E. coli csgB- mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA secreted by S. typhimurium csgB- mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy