SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chauhan G.) srt2:(2005-2009)"

Search: WFRF:(Chauhan G.) > (2005-2009)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Milz, Mathias, et al. (author)
  • Validation of water vapour profiles (version 13) retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat
  • 2009
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 2:2, s. 379-399
  • Journal article (peer-reviewed)abstract
    • Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System(AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indicationof a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. Theresults of chi2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the chi2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.
  •  
2.
  • Chauhan, Swarup, et al. (author)
  • MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS
  • 2009
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; :2, s. 337-353
  • Journal article (peer-reviewed)abstract
    • During several periods since 2005 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat has performed observations dedicated to the region of the upper troposphere/lower stratosphere (UTLS). For the duration of November/December 2005 global distributions of temperature and several trace gases from MIPAS UTLS-1 mode measurements have been retrieved using the IMK/IAA (Institut für Meteorologie und Klimaforschung/Instituto de Astrofísica de Andalucía) scientific processor. In the UTLS region a vertical resolution of 3 km for temperaure, 3 to 4 km for H2O, 2.5 to 3 km for O3, 3.5 km for HNO3 and 3.5 to 2.5 km for N2O has been achieved. The retrieved temperature, H2O, O3, HNO3, N2O, and relative humidity over ice are intercompared with the Microwave Limb Sounder (MLS/Aura) v2.2 data in the pressure range 316 to 0.68 hPa, 316 to 0.68 hPa, 215 to 0.68 hPa, 215 to 3.16 hPa, 100 to 1 hPa and 316 to 10 hPa, respectively. In general, MIPAS and MLS temperatures are biased within ±4 K over the whole pressure and latitude range. Systematic, latitude-independent differences of −2 to −4 K (MIPAS-MLS) at 121 hPa are explained by previously observed biases in the MLS v2.2 temperature retrievals. Temperature differences of −4 K up to 12 K above 10.0 hPa are present both in MIPAS and MLS with respect to ECMWF (European Centre for Medium-Range Weather Forecasts) and are likely due to deficiencies of the ECMWF analysis data. MIPAS and MLS stratospheric volume mixing ratios (vmr) of H2O are biased within ±1 ppmv, with indication of oscillations between 146 and 26 hPa in the MLS dataset. Tropical upper tropospheric values of relative humidity over ice measured by the two instruments differ by ±20% in the pressure range ~146 to 68 hPa. These differences are mainly caused by the MLS temperature biases. Ozone mixing ratios agree within 0.5 ppmv (10 to 20%) between 68 and 14 hPa. At pressures smaller than 10 hPa, MIPAS O3 vmr are higher than MLS by an average of 0.5 ppmv (10%). General agreement between MIPAS and MLS HNO3 is within the range of −1.0 (−10%) to 1.0 ppbv (20%). MIPAS HNO3 is 1.0 ppbv (10%) higher compared to MLS between 46 hPa and 10 hPa over the Northern Hemisphere. Over the tropics at 31.6 hPa MLS shows a low bias of more than 1 ppbv (>50%). In general, MIPAS and MLS N2O vmr agree within 20 to 40 ppbv (20 to 40%). Differences in the range between 100 to 21 hPa are attributed to a known 20% positive bias in MIPAS N2O data.
  •  
3.
  • Sprangers, MAG, et al. (author)
  • The establishment of the GENEQOL consortium to investigate the genetic disposition of patient-reported quality-of-life outcomes
  • 2009
  • In: Twin research and human genetics : the official journal of the International Society for Twin Studies. - : Cambridge University Press (CUP). - 1832-4274. ; 12:3, s. 301-311
  • Journal article (peer-reviewed)abstract
    • To our knowledge, no comprehensive, interdisciplinary initiatives have been taken to examine the role of genetic variants on patient-reported quality-of-life outcomes. The overall objective of this paper is to describe the establishment of an international and interdisciplinary consortium, the GENEQOL Consortium, which intends to investigate the genetic disposition of patient-reported quality-of-life outcomes. We have identified five primary patient-reported quality-of-life outcomes as initial targets: negative psychological affect, positive psychological affect, self-rated physical health, pain, and fatigue. The first tangible objective of the GENEQOL Consortium is to develop a list of potential biological pathways, genes and genetic variants involved in these quality-of-life outcomes, by reviewing current genetic knowledge. The second objective is to design a research agenda to investigate and validate those genes and genetic variants of patient-reported quality-of-life outcomes, by creating large datasets. During its first meeting, the Consortium has discussed draft summary documents addressing these questions for each patient-reported quality-of-life outcome. A summary of the primary pathways and robust findings of the genetic variants involved is presented here. The research agenda outlines possible research objectives and approaches to examine these and new quality-of-life domains. Intriguing questions arising from this endeavor are discussed. Insight into the genetic versus environmental components of patient-reported quality-of-life outcomes will ultimately allow us to explore new pathways for improving patient care. If we can identify patients who are susceptible to poor quality of life, we will be able to better target specific clinical interventions to enhance their quality of life and treatment outcomes.
  •  
4.
  • Young, D., et al. (author)
  • The A2b adenosine receptor protects against inflammation and excessive vascular adhesion
  • 2006
  • In: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 116:7, s. 1913-1923
  • Journal article (peer-reviewed)abstract
    • Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor-knockout/reporter gene-knock-in (A2BAR-knockout/reporter gene-knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-alpha, and a consequent downregulation of IkappaB-alpha are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view