SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chi Zhi Hong) srt2:(2006-2009)"

Sökning: WFRF:(Chi Zhi Hong) > (2006-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chi, Zhi-Hong, et al. (författare)
  • Zinc transporter 7 is located in the cis-Golgi apparatus of mouse choroid epithelial cells.
  • 2006
  • Ingår i: Neuroreport. - : Ovid Technologies (Wolters Kluwer Health). - 0959-4965. ; 17:17, s. 1807-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular localization of zinc transporter 7 protein in the mouse choroid plexus was examined in this study. Zinc transporter 7 immunoreactive cells were detected in the third, lateral, and fourth ventricles of CD-1 mouse brain. Distinct zinc transporter 7 immunoreactivity was concentrated in the perinuclear regions of the positive cells. The results from zinc autometallography showed that zinc-positive grains were also predominantly located in the perinuclear areas. Ultrastructural localization showed that zinc transporter 7 immunostaining was predominantly present in the membrane and cisternae of the cis-Golgi networks and some vesicle compartments. The results support the notion that zinc transporter 7 may participate in the transport of the cytoplasmic zinc into the Golgi apparatus, and may be involved in local packaging of zinc-binding proteins in the mouse choroid plexus.
  •  
2.
  • Zhang, Li, et al. (författare)
  • Imunoreactivity of zinc transporter 7 (ZNT7) in mouse dorsal root ganglia.
  • 2007
  • Ingår i: Brain research bulletin. - : Elsevier BV. - 0361-9230. ; 74:4, s. 278-83
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we showed for the first time the localization of ZNT7 immunoreactivity in the mouse dorsal root ganglion (DRG) by means of immunohistochemistry and confocal laser scanning microscopy. Our results revealed that ZNT7 immunoreactivity was abundantly expressed in the nerve cells of the mouse DRG. Strong ZNT7 immunoreactivity was predominantly distributed in the perinuclear region of positive cells, while the nuclei were devoid of staining. Double immunofluorescence labeling of ZNT7 and TGN38 revealed a colocalization of the two antigens in the Golgi apparatus. In addition, the presence of labile zinc ions was detected with in vivo zinc selenium autometallography (AMG). AMG observations showed that the zinc staining pattern was also predominately located in the perinuclear Golgi area, like the ZNT7 immunostaining pattern in the DRG. These observations strongly suggest that ZNT7 may play an important role in facilitating zinc transport into the Golgi apparatus from the cytosol in the mouse DRG.
  •  
3.
  • Zheng, Wei, et al. (författare)
  • Divalent metal transporter 1 is involved in amyloid precursor protein processing and A{beta} generation.
  • 2009
  • Ingår i: FASEB Journal. - : Wiley. - 1530-6860 .- 0892-6638. ; 23:12, s. 4207-4217
  • Tidskriftsartikel (refereegranskat)abstract
    • The amyloid-beta precursor protein (APP) and its pathogenic byproduct beta-amyloid peptide (Abeta) play central roles in the pathogenesis of Alzheimer's disease (AD). Reduction in levels of the potentially toxic Abeta is one of the most important therapeutic goals in AD. Recent studies have shown that bivalent metals such as iron, copper, and zinc are involved in APP expression, Abeta deposition, and senile plaque formation in the AD brain. However, the underlying mechanisms involved in abnormal homeostasis of bivalent metals in AD brain remain unclear. In the present study, we found that two isoforms of the divalent metal transporter 1 (DMT1), DMT1-IRE, and DMT1-nonIRE, were colocalized with Abeta in the plaques of postmortem AD brain. Using the APP/PS1 transgenic mouse model, we found that the levels of both DMT1-IRE and DMT1-nonIRE were significantly increased in the cortex and hippocampus compared with wild type-control. We further verified the proposed mechanisms by which DMT1 might be involved in APP processing and Abeta secretion by using the SH-SY5Y cell line stably overexpressing human APP Swedish mutation (APPsw) as a cell model. We found that overexpression of APPsw resulted in increased expression levels of both DMT1-IRE and DMT1-nonIRE in SH-SY5Y cells. Interestingly, silencing of endogenous DMT1 by RNA interference, which reduced bivalent ion influx, led to reductions of APP expression and Abeta secretion. These findings suggest both that DMT1 plays a critical role in ion-mediated neuropathogenesis in AD and that pharmacological blockage of DMT1 may provide novel therapeutic strategies against AD.-Zheng, W., Xin, N., Chi, Z.-H., Zhao, B.-L., Zhang, J., Li, J.-Y., Wang, Z.-Y. Divalent metal transporter 1 (DMT1) is involved in amyloid precursor protein processing and Abeta generation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy