SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Christensen Torben) srt2:(2005-2009)"

Sökning: WFRF:(Christensen Torben) > (2005-2009)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elberling, Bo, et al. (författare)
  • High Arctic soil CO2 and CH4 production controlled by temperature, water, freezing and snow
  • 2008
  • Ingår i: High-arctic ecosystem dynamics in a changing climate - Ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland (Advances in Ecological Research). - 0065-2504. - 9780123736659 ; 40, s. 441-472
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Soil gas production processes, mainly anaerobic or aerobic soil respiration, drive major gas fluxes across the soil-atmosphere interface. Carbon dioxide (CO2) effluxes, an efflux which in most ecosystems is a result of both autotrophic and heterotrophic respiration, in particular have received international attention. The importance of both CO2 and methane (CH4) fluxes are emphasised in the Arctic because of the large amount of soil organic carbon stored in terrestrial ecosystems and changes in uptake and release due to climate changes. This chapter focuses on controls on spatial and temporal trends in subsurface CO2 and CH4 production as well as on transport and release of gases from the soil observed in the valley Zackenbergdalen. A dominance of near-surface temperatures controlling both spatial and seasonal trends is shown based on data obtained using closed chamber and eddy-correlation techniques as well as in manipulated field plots and in controlled incubation experiments. Despite variable temperature sensitivities reported, most data can be fairly well fitted to exponential temperature-dependent equations. The water content (at wet sites linked to the depth to the water table) is a second major factor regulating soil respiration processes, but the effect is quite different in contrasting vegetation types. Dry heath sites are shown to be periodically water limited during the growing season and respond therefore with high respiration rates when watered. In contrast, water saturated conditions during most of the growing season in the fen areas hinder the availability of oxygen, resulting in both CO2 and CH4 production. Thus, water table drawdown results in decreasing CH4 effluxes but increasing CO2 effluxes. Additional controls on gas production are shown to be related to the availability of substrate and plant productivity. Subsurface gas production will produce partial and total pressure gradient causing gas transport, which in well-drained soils is mainly controlled by diffusion, whereas gas advection, bubbles and transport through roots and stems may be important in more saturated soils. Bursts of CO2 gas have been observed during spring thaw and confirmed in controlled soil thawing experiments. Field observations as well as experimental work suggest that such bursts represent partly on-going soil respiration and a physical release of gas produced during the winter. The importance of winter soil respiration is emphasised because of the fact that microbial respiration in Zackenberg samples is noted down to a least -18 degrees C. Hence, the importance of winter respiration and burst events in relation to seasonal and future climate trends requires more than just summer measurements. For example, the autumn period seems important as snowfall prior to low air temperature may insulate the soil, keeping soil temperatures high. This will extend the period of high soil respiration rates and thereby increase the importance of the winter period for the annual carbon balance. Because of the complexity of factors controlling subsurface gas production, we conclude that different parts of the landscape will respond quite differently to the same climate changes as well as that short-term effects are likely to be different from long-term effects.
  •  
2.
  • Elberling, Bo, et al. (författare)
  • Soil and Plant Community Characteristics and Dynamics at Zackenberg
  • 2008
  • Ingår i: High-arctic ecosystem dynamics in a changing climate - Ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland (Advances in Ecological Research). - 0065-2504. - 9780123736659 ; 40, s. 223-248
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Arctic soils hold large amounts of nutrients in the weatherable minerals and the soil organic matter, which slowly decompose. The decomposition processes release nutrients to the plant-available nutrient pool as well as greenhouse gases to the atmosphere. Changes in climatic conditions, for example, changes in the distribution of snow, water balance and the length of the growing season, are likely to affect the complex interactions between plants, abiotic and biotic soil processes as well as the composition of soil micro- and macro-fauna and thereby the overall decomposition rates. These interactions, in turn, will influence soil-plant functioning and vegetation composition in the short as well as in the long term. In this chapter, we report on soils and. plant communities and their distribution patterns in the valley Zackenbergdalen and focus on the detailed investigations within five dominating plant communities. These five communities are located along an ecological gradient in the landscape and are closely related to differences in water availability. They are therefore indirectly formed as a result of the distribution of landforms, redistribution of snow and drainage conditions. Each of the plant communities is closely related to specific nutrient levels and degree of soil development including soil element accumulation and translocation, for example, organic carbon. Results presented here show that different parts of the landscape have responded quite differently to the same overall climate changes the last 10 years and thus, most likely in the future too. Fens represent the wettest sites holding large reactive buried carbon stocks. A warmer climate will cause a permafrost degradation, which most likely will result in anoxic decomposition and increasing methane emissions. However, the net gas emissions at fen sites are sensitive to long-term changes in the water table level. Indeed, increasing maximum active layer depth at fen sites has been recorded together with a decreasing water level at Zackenberg. This is in line with the first signs of increasing extension of grasslands at the expense of fens. In contrast, the most exposed and dry areas have less soil carbon, and decomposition processes are periodically water limited. Here, an increase in air temperatures may increase active layer depth more than at fen sites, but water availability will be critical in determining nutrient cycling and plant production. Field manipulation experiments of increasing temperature, water supply and nutrient addition show that soil-plant interactions are sensitive to these variables. However, additional plant-specific investigations are needed before net effects of climate changes on different landscape and plant communities can be integrated in a landscape context and used to assess the net ecosystem effect of future climate scenarios.
  •  
3.
  •  
4.
  • Forchhammer, Mads C., et al. (författare)
  • Zackenberg in a circumpolar context
  • 2008
  • Ingår i: Advances in Ecological Research. - 0065-2504. ; 40, s. 499-544
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Throughout the Northern Hemisphere, changes in local and regional climate conditions are coupled to the recurring and persistent large-scale patterns of pressure and circulation anomalies spanning vast geographical areas, the so-called teleconnection patterns. Indeed, the atmospheric fluctuations described by the North Atlantic Oscillation (NAO) are closely associated with the last four decades of inter-annual variability in local snow and ice conditions observed in the Arctic. Since the NAO has also been connected with changes in the global climate, the behaviour of species, communities and other ecosystem elements at Zackenberg in relation to the NAO enables us to view these in circumpolar and global contexts. Large-scale systems like the NAO constitute the link between the global change and local climate variability to which ecosystem components respond. Here, we place selected ecosystem elements from the monitoring programme Zackenberg Basic presented in previous chapters in a circumpolar context related to NAO-mediated climatic changes. We begin by linking the local variability in winter weather conditions at Zackenberg to fluctuations in the NAO. We then proceed by linking the observed intra- and inter-annual behaviour of selected ecosystem elements to changes in the NAO. The functional ecosystem characteristics in focus are landscape gas exchange dynamics phenological patterns at different trophic levels, consumer-resource dynamics and community stability. The influence of the NAO is presented and discussed in a broader perspective based on information obtained from other arctic localities. The relation between the NAO and the Zackenberg winter weather, is nonlinear, reflecting differential effects of the NAO as the index moves between high and low phases. The inverse hyperbolic relationship found between the NAO and the amount of winter snow was also evident as non-linear response in organisms and systems to inter-annual changes in the NAO. Responses investigated included growth and reproduction in plants and animals, population dynamics and synchrony, inter-trophic interactions and community stability together with system feedback dynamics.
  •  
5.
  • Grøndahl, Louise, et al. (författare)
  • Spatial and interannual variability of trace gas fluxes in a heterogeneous High Arctic landscape
  • 2008
  • Ingår i: High-arctic ecosystem dynamics in a changing climate - Ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland (Advances in Ecological Research). - 0065-2504. - 9780123736659 ; 40, s. 473-498
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Summertime measurements of CO2 and CH4 fluxes were carried out over a range of high-arctic ecosystem types in the valley Zackenbergdalen since 1996 using both chamber and eddy covariance methodology. The net ecosystem CO2 exchange and CH4 flux data presented reveal a high degree of inter-annual variability within the dominant vegetation types in the valley, but also show distinct differences between them. In particular, the wet and dry parts of the valley show distinct differences. In general, the wet parts of the valley, the fens dominated by white cotton grass Eriophorum scheuchzeri, show high productivity, also in comparison with other sites, whereas CO2 uptake rates in the white arctic bell heather Cassiope tetragona and mountain avens Dryas spp.-dominated heaths are much smaller. Also within the different ecosystem types, a high degree of spatial variability can be documented. The spatial variability both within and between ecosystem types is especially pronounced for the CH4 flux and can, at least partly, be related to differences in vegetation composition and water table level. The importance of the CH4 emission from the various ecosystem types is evaluated both in relation to carbon and greenhouse gas budgets. In both wet and drier ecosystem components, inter-annual variability seems best explained through differences in the amount and distribution of snow in spring and the length of the growing season. A large number of replicate chamber measurements carried out over various vegetation types in the valley are used to produce a synthesis of 10 years of flux data available on growing season carbon dynamics and CH4 emission patterns in the individual parts of this high-arctic ecosystem and relates the differences between the ecosystems found in Zackenbergdalen to comparable sites in the circumpolar North.
  •  
6.
  • Meltofte, Hans, et al. (författare)
  • Introduction
  • 2008
  • Ingår i: High-arctic ecosystem dynamics in a changing climate - Ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland (Advances in Ecological Research). - 0065-2504. - 9780123736659 ; 40, s. 1-12
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Our continuously changing global environment requires continuous and detailed monitoring for us to understand how ecosystems are structured and function in response to climatic changes. Understanding the arctic ecosystems is of particular importance (Oechel et al., 1997). Indeed, rather than in boreal and temperate regions, the forecasted climatic changes will be first and most pronounced in the Arctic. Hence, performing long-term monitoring of an arctic ecosystem provides us with the unique ability to not only give "early warnings" of climate change impacts but also, and perhaps even more important, predict how and where in the ecosystem these will be most pronounced and with what consequences for stability, structure and function. Since 1995, Zackenberg Ecological Research Operations (ZERO) has monitored annually over 1500 variables concurrently across the physical and biological compartments of a single high-arctic terrestrial ecosystem in central Northeast Greenland. This makes ZERO the most integrated and comprehensive long-term monitoring and research programme presently operating in the Arctic. This book explores the complex physical and ecological long-term dynamics of a high-arctic terrestrial ecosystem. Since the book is based on data from ZERO, this introductory chapter presents the structural and organisational foundation for ZERO. Following our introduction are four chapters providing the climatic and ecological background together with a presentation of the study area. The rest of the book is devoted entirely to the physical, ecological and ecosystem processes.
  •  
7.
  • Backstrand, K., et al. (författare)
  • Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113, s. G03026-
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a study of the spatial and temporal variability of total hydrocarbon (THC) emissions from vegetation and soil at a subarctic mire, northern Sweden. THCs include methane (CH4) and nonmethane volatile organic compounds (NMVOCs), both of which are atmospherically important trace gases and constitute a significant proportion of the carbon exchange between biosphere and atmosphere. Reliable characterization of the magnitude and the dynamics of the THC fluxes from high latitude peatlands are important when considering to what extent trace gas emissions from such ecosystems may change and feed back on climate regulation as a result of warmer climate and melting permafrost. High frequency measurements of THC and carbon dioxide (CO2) were conducted during four sequential growing seasons in three localities representing the trophic range of plant communities at the mire. The magnitude of the THC flux followed the moisture gradient with increasing emissions from a dry Palsa site (2.2 +/- 0.1 mgC m(-2) d(-1)), to a wet intermediate melt feature with Sphagnum spp. (28 +/- 0.3 mgC m(-2) d(-1)) and highest emissions from a wet Eriophorum spp. site (122 +/- 1.4 mgC m(-2) d(-1)) (overall mean +/- 1 SE, n = 2254, 2231 and 2137). At the Palsa site, daytime THC flux was most strongly related to air temperature while daytime THC emissions at the Sphagnum site had a stronger relation to ground temperature. THC emissions at both the wet sites were correlated to net ecosystem exchange of CO2. An overall spatial correlation indicated that areas with highly productive vegetation communities also had high THC emission potential.
  •  
8.
  • Bäckstrand, Kristina, 1979- (författare)
  • Carbon gas biogeochemistry of a northern peatland - in a dynamic permafrost landscape
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is about biogeochemical processes of a northern peatland and their importance as a link between the climate and the terrestrial system. Increased temperatures on a global level, and particularly in the Arctic, have led to melting permafrost and changes in hydrology. In turn, this affect the natural exchange of radiatively important trace gases between land and atmosphere that may reinforce climate change. The aim of this thesis is to increase the understanding about the exchange of carbon dioxide (CO2), methane (CH4) and non-methane volatile organic compounds (NMVOCs) occurring in northern peatlands, to decrease uncertainty about their future carbon (C) balance. In order to pursue this aim, we designed a study that allowed measuring the C exchange at a subarctic peatland, accounting for spatial and temporal analysis at several levels. The field site was the Stordalen mire, northern Sweden. Exchange rates of CO2, and total hydrocarbons (THCs; CH4 and NMVOCs) were measured using an automatic chamber system for up to six years, at three different types of vegetation communities and permafrost regimes. The gas exchange was found to relate to different environmental and biological variables at different vegetation communities and at different temporal scales. Differences in flux rates and controls between sites could be explained with biological and environmental variables in a better way than the seasonal and interannual variability within a site.Snow season flux measurements were determined to be of high importance regarding the annual C budget. By excluding the snow season, the potential C source strength of a peatland is likely to be underestimated. The importance of combining the THCs with the CO2 to estimate the annual C balance was demonstrated as THC could be sufficient to shift the mire from a sink to a source of C to the atmosphere. Again, the C source strength may be significantly underestimated if only focusing on CO2 fluxes in wet peatland environments.
  •  
9.
  • Bäckstrand, Kristina, et al. (författare)
  • Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden
  • 2008
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:2, s. 226-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is need for including NMVOCs in the overall carbon budget. Automatic and manual chamber measurements were used to estimate NMVOC fluxes from three dominating subhabitats on the mire during three growing seasons. Emission rates varied and were related to plant species distribution and seasonal net ecosystem exchange of carbon dioxide. The highest fluxes were observed from wetter sites dominated by Eriophorum and Sphagnum spp. Total NMVOC emissions from the mire (similar to 17 ha) is estimated to consist of similar to 150 kgC during a growing season with 150 d. NMVOC fluxes can account for similar to 5% of total net carbon exchange (-3177 kgC) at the mire during the same period. NMVOC emissions are therefore a significant component in a local carbon budget for peatlands.
  •  
10.
  • Callaghan, Terry V., et al. (författare)
  • Arctic tundra and Polar Desert Ecosystems
  • 2005
  • Ingår i: Arctic Climate Impact Assessment. - 9780521865098 - 0521865093
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45
Typ av publikation
tidskriftsartikel (24)
bokkapitel (12)
konferensbidrag (5)
forskningsöversikt (2)
samlingsverk (redaktörskap) (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (16)
Författare/redaktör
Ström, Lena (12)
Elberling, Bo (8)
Johansson, Margareta (5)
Lindroth, Anders (4)
Lund, Magnus (3)
Malmer, Nils (3)
visa fler...
Åkerman, Jonas (3)
Callaghan, T. V. (2)
Hammarlund, Dan (2)
Post, Eric (2)
Crill, Patrick (2)
Luoto, Miska (1)
Rinne, J (1)
Olsen, Anja (1)
Tjønneland, Anne (1)
Bret-Harte, M. Syndo ... (1)
McGuire, A. David (1)
Christensen, Torben ... (1)
Karlsson, Jan (1)
Peng, Changhui (1)
Johansson, T (1)
Aurela, M. (1)
Laurila, T. (1)
Schmidt, Niels Marti ... (1)
Nilsson, M (1)
Guo, L. (1)
Syvänen, Ann-Christi ... (1)
Rundgren, Mats (1)
Vesala, T. (1)
Smith, Benjamin (1)
Arneth, Almut (1)
Thomas, M (1)
Foley, J (1)
Hickler, Thomas (1)
Soussana, Jean-Franc ... (1)
Michelsen, Anders (1)
Cerenius, Yngve (1)
Brovkin, V. (1)
Huntley, Brian (1)
Nielsen, Rasmus (1)
Willerslev, Eske (1)
Anderson, Leif G, 19 ... (1)
Macdonald, R. W. (1)
Fox, Anthony D. (1)
Jensen, Torben R. (1)
Björn, Lars Olof (1)
Danell, Kjell (1)
Marland, Gregg (1)
Ims, Rolf A. (1)
Fukuda, M (1)
visa färre...
Lärosäte
Lunds universitet (43)
Stockholms universitet (6)
Linköpings universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Mittuniversitetet (1)
visa färre...
Språk
Engelska (45)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (44)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy