SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Christlieb N.) srt2:(2010-2014)"

Sökning: WFRF:(Christlieb N.) > (2010-2014)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caffau, E., et al. (författare)
  • Velocity and abundance precisions for future high-resolution spectroscopic surveys: A study for 4MOST
  • 2013
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley. - 0004-6337. ; 334:3, s. 197-216
  • Tidskriftsartikel (refereegranskat)abstract
    • In preparation for future, large-scale, multi-object, high-resolution spectroscopic surveys of the Galaxy, we present a series of tests of the precision in radial velocity and chemical abundances that any such project can achieve at a 4 m class telescope. We briefly discuss a number of science cases that aim at studying the chemo-dynamical history of the major Galactic components (bulge, thin and thick disks, and halo) - either as a follow-up to the Gaia mission or on their own merits. Based on a large grid of synthetic spectra that cover the full range in stellar parameters of typical survey targets, we devise an optimal wavelength range and argue for a moderately high-resolution spectrograph. As a result, the kinematic precision is not limited by any of these factors, but will practically only suffer from systematic effects, easily reaching uncertainties <1km s(-1). Under realistic survey conditions (namely, considering stars brighter than r = 16 mag with reasonable exposure times) we prefer an ideal resolving power of R similar to 20 000 on average, for an overall wavelength range (with a common two-arm spectrograph design) of [395;456.5] nm and [587; 673] nm. We show for the first time on a general basis that it is possible to measure chemical abundance ratios to better than 0.1 dex for many species (Fe, Mg, Si, Ca, Ti, Na, Al, V, Cr, Mn, Co, Ni, Y, Ba, Nd, Eu) and to an accuracy of about 0.2 dex for other species such as Zr, La, and Sr. While our feasibility study was explicitly carried out for the 4MOST facility, the results can be readily applied to and used for any other conceptual design study for high-resolution spectrographs. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  •  
2.
  • De Jong, R. S., et al. (författare)
  • 4MOST - 4-metre multi-object spectroscopic telescope
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819491473 ; , s. 84460T-
  • Konferensbidrag (refereegranskat)abstract
    • The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R∼20,000 (395-456.5 nm & 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
  •  
3.
  • Hansen, C. J., et al. (författare)
  • Silver and palladium help unveil the nature of a second r-process
  • 2012
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The rapid neutron-capture process, which created about half of the heaviest elements in the solar system, is believed to have been unique. Many recent studies have shown that this uniqueness is not true for the formation of lighter elements, in particular those in the atomic number range 38 < Z < 48. Among these, palladium (Pd) and especially silver (Ag) are expected to be key indicators of a possible second r-process, but until recently they have been studied only in a few stars. We therefore target Pd and Ag in a large sample of stars and compare these abundances to those of Sr, Y, Zr, Ba, and Eu produced by the slow (s-) and rapid (r-) neutron-capture processes. Hereby we investigate the nature of the formation process of Ag and Pd. Aims. We study the abundances of seven elements (Sr, Y, Zr, Pd, Ag, Ba, and Eu) to gain insight into the formation process of the elements and explore in depth the nature of the second r-process. Methods. By adopting a homogeneous one-dimensional local thermodynamic equilibrium (1D LTE) analysis of 71 stars, we derive stellar abundances using the spectral synthesis code MOOG, and the MARCS model atmospheres. We calculate abundance ratio trends and compare the derived abundances to site-dependent yield predictions (low-mass O-Ne-Mg core-collapse supernovae and parametrised high-entropy winds), to extract characteristics of the second r-process. Results. The seven elements are tracers of different (neutron-capture) processes, which in turn allows us to constrain the formation process(es) of Pd and Ag. The abundance ratios of the heavy elements are found to be correlated and anti-correlated. These trends lead to clear indications that a second/weak r-process, is responsible for the formation of Pd and Ag. On the basis of the comparison to the model predictions, we find that the conditions under which this process takes place differ from those for the main r-process in needing lower neutron number densities, lower neutron-to-seed ratios, and lower entropies, and/or higher electron abundances. Conclusions. Our analysis confirms that Pd and Ag form via a rapid neutron-capture process that differs from the main r-process, the main and weak s- processes, and charged particle freeze-outs. We find that this process is efficiently working down to the lowest metallicity sampled by our analysis ([Fe/H] = -3.3). Our results may indicate that a combination of these explosive sites is needed to explain the variety in the observationally derived abundance patterns.
  •  
4.
  • Mashonkina, L., et al. (författare)
  • The Hamburg/ESO R-process enhanced star survey (HERES) V. Detailed abundance analysis of the r-process enhanced star HE 2327-5642
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 516, s. A46-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present a detailed abundance analysis of a strongly r-process enhanced giant star discovered in the HERES project, HE 2327-5642, for which [Fe/H] = -2.78, [r/Fe] = +0.99. Methods. We determined the stellar parameters and element abundances by analyzing the high-quality VLT/UVES spectra. The surface gravity was calculated from the non-local thermodynamic equilibrium (NLTE) ionization balance between Fe I and Fe II, and Ca I and Ca II. Results. Accurate abundances for a total of 40 elements and for 23 neutron-capture elements beyond Sr and up to Th were determined in HE 2327-5642. For every chemical species, the dispersion in the single line measurements around the mean does not exceed 0.11 dex. The heavy element abundance pattern of HE 2327-5642 is in excellent agreement with those previously derived for other strongly r-process enhanced stars, such as CS 22892-052, CS 31082-001, and HE 1219-0312. Elements in the range from Ba to Hf match the scaled Solar r-process pattern very well. No firm conclusion can be drawn about the relationship between the fisrt neutron-capture peak elements, Sr to Pd, in HE 2327-5642 and the Solar r-process, due to the uncertainty in the Solar r-process. A clear distinction in Sr/Eu abundance ratios was found between the halo stars of different europium enhancement. The strongly r-process enhanced stars contain a low Sr/Eu abundance ratio at [Sr/Eu] = -0.92 +/- 0.13, while the stars with 0 < [Eu/Fe] < 1 and [Eu/Fe] < 0 have 0.36 dex and 0.93 dex higher Sr/Eu values, respectively. Radioactive dating for HE 2327-5642 with the observed thorium and rare-earth element abundance pairs results in an average age of 13.3 Gyr, when based on the high-entropy wind calculations, and 5.9 Gyr, when using the Solar r-residuals. We propose that HE 2327-5642 is a radial-velocity variable based on our high-resolution spectra covering similar to 4.3 years.
  •  
5.
  • Mashonkina, L., et al. (författare)
  • The Hamburg/ESO R-process Enhanced Star survey (HERES) X. HE 2252-4225, one more r-process enhanced and actinide-boost halo star
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. A43-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Studies of the r-process enhanced stars are important for understanding the nature and origin of the r-process better. Aims. We present a detailed abundance analysis of a very metal-poor giant star discovered in the HERES project, HE 2252-4225, which exhibits overabundances of the r-process elements with [r/Fe] = +0.80. Methods. We determined the stellar atmosphere parameters, T-eff = 4710 K, log g = 1.65, and [Fe/H] = -2.63, and chemical abundances by analysing the high-quality VLT/UVES spectra. The surface gravity was calculated from the non-local thermodynamic equilibrium (NLTE) ionisation balance between Fe i and Fe ii. Results. Accurate abundances for a total of 38 elements, including 22 neutron-capture elements beyond Sr and up to Th, were determined in HE 2252-4225. For every chemical species, the dispersion in the single line measurements around the mean does not exceed 0.12 dex. This object is deficient in carbon, as expected for a giant star with T-eff < 4800 K. The stellar Na-Zn abundances are well fitted by the yields of a single supernova of 14.4 M-circle dot. For the neutron-capture elements in the Sr-Ru, Ba-Yb, and Os-Ir regions, the abundance pattern of HE 2252-4225 is in excellent agreement with the average abundance pattern of the strongly r-process enhanced stars CS 22892-052, CS 31082-001, HE 1219-0312, and HE 1523-091. This suggests a common origin of the first, second, and third r-process peak elements in HE 2252-4225 in the classical r-process. We tested the solar r-process pattern based on the most recent s-process calculations of Bisterzo, Travaglio, Gallino, Wiescher, and Kappeler and found that elements in the range from Ba to Ir match it very well. No firm conclusion can be drawn about the relationship between the first neutron-capture peak elements, Sr to Ru, in HE 2252-4225 and the solar r-process, owing to the uncertainty in the solar r-process. The investigated star has an anomalously high Th/Eu abundance ratio, so that radioactive dating results in a stellar age of tau = 1.5 +/- 1.5 Gyr that is not expected for a very metal-poor halo star.
  •  
6.
  • Norris, J. E., et al. (författare)
  • The most metal-poor stars. I. Discovery, data, and atmospheric parameters
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:1, s. 25-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of 34 stars in the Hamburg/ESO Survey for metal-poor stars and the Sloan Digital Sky Survey that have [Fe/H] ≲ -3.0. Their median and minimum abundances are [Fe/H] = -3.1 and -4.1, respectively, while 10 stars have [Fe/H] < -3.5. High-resolution, high signal-to-noise spectroscopic data - equivalent widths and radial velocities - are presented for these stars, together with an additional four objects previously reported or currently being investigated elsewhere. We have determined the atmospheric parameters, effective temperature (T eff), and surface gravity (log g), which are critical in the determination of the chemical abundances and the evolutionary status of these stars. Three techniques were used to derive these parameters. Spectrophotometric fits to model atmosphere fluxes were used to derive T eff, log g, and an estimate of E(B - V); Hα, Hβ, and Hγ profile fitting to model atmosphere results provided the second determination of T eff and log g; and finally, we used an empirical T eff-calibrated Hδ index, for the third, independent T eff determination. The three values of T eff are in good agreement, although the profile fitting may yield systematically cooler T eff values, by ∼100 K. This collective data set will be analyzed in future papers in the present series to utilize the most metal-poor stars as probes of conditions in the early universe.
  •  
7.
  • Norris, J. E., et al. (författare)
  • The most metal-poor stars. IV. the two populations with [Fe/H] ≲ -3.0
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:1, s. 28-
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the carbon-normal and carbon-rich populations of Galactic halo stars having [Fe/H] ≲ -3.0, utilizing chemical abundances from high-resolution, high signal-to-noise model-atmosphere analyses. The C-rich population represents ∼28% of stars below [Fe/H] = -3.1, with the present C-rich sample comprising 16 CEMP-no stars, and two others with [Fe/H] ∼ -5.5 and uncertain classification. The population is O-rich ([O/Fe] ≳ +1.5); the light elements Na, Mg, and Al are enhanced relative to Fe in half the sample; and for Z > 20 (Ca) there is little evidence for enhancements relative to solar values. These results are best explained in terms of the admixing and processing of material from H-burning and He-burning regions as achieved by nucleosynthesis in zero-heavy-element models in the literature of "mixing and fallback" supernovae (SNe); of rotating, massive, and intermediate-mass stars; and of Type II SNe with relativistic jets. The available (limited) radial velocities offer little support for the C-rich stars with [Fe/H] < -3.1 being binary. More data are required before one could conclude that binarity is key to an understanding of this population. We suggest that the C-rich and C-normal populations result from two different gas cooling channels in the very early universe of material that formed the progenitors of the two populations. The first was cooling by fine-structure line transitions of C II and O I (to form the C-rich population); the second, while not well defined (perhaps dust-induced cooling?), led to the C-normal group. In this scenario, the C-rich population contains the oldest stars currently observed.
  •  
8.
  • Norris, John E., et al. (författare)
  • The oxygen abundance of the ultra-metal-poor star HE 0557-4840
  • 2012
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 753:2, s. 150-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a high-resolution ultraviolet (UV) spectrum of the ultra-metal-poor (UMP) carbon-enhanced red giant HE 0557-4840 (T-eff/log g/[Fe/H] = 4900/2.2/-4.8). Combining these data with earlier observations, the radial velocity is 212.0 +/- 0.4 km s(-1), with no evidence of variability during 2006 February to 2007 December. One-dimensional (1D) LTE model-atmosphere analysis of UV Fe and CH lines confirms the iron and carbon abundances obtained previously ([Fe/H] = -4.8 and [C/Fe](1D) = +1.7), and places a more stringent limit on nitrogen abundance of [N/Fe](1D) < +1.0. Analysis of the UV OH lines yields [O/Fe](1D) = +2.3 +/- 0.4. When corrections are made for three-dimensional (3D) effects we obtain [C/Fe](3D) = +1.1, [N/Fe](3D) < +0.1, and [O/Fe](3D) = +1.4. Comparison of the abundances of HE 0557-4840 with those of supernova models of Nomoto et al. and Joggerst et al. suggests that none is able to explain fully the observed abundance pattern. For HE 0557-4840, the Frebel et al. transition discriminant D-trans(= log(10([C/H]) + 0.3 x 10([O/H])) = -3.4 +/- 0.2, consistent with fine-structure transitions of C II and O I being a major cooling mechanism of star-forming regions at the earliest times. Of the four stars known to have [Fe/H] less than or similar to -4.3, three are strongly carbon and oxygen enhanced. If the suggestion by Caffau et al. that SDSS J102915+172927 ([Fe/H] = -4.7) does not belong to the class of C-rich, O-rich, UMP stars is supported by future similar discoveries, one will need to consider multiple channels for the production of stars having [Fe/H] less than or similar to -4.3.
  •  
9.
  • Ren, J., et al. (författare)
  • The Hamburg/ESO R-process Enhanced Star survey (HERES) : VII. Thorium abundances in metal-poor stars
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Tidskriftsartikel (refereegranskat)abstract
    • We report thorium abundances for 77 metal-poor stars in the metallicity range of -3.5 < [Fe/H] < -1.0, based on "snapshot" spectra obtained with VLT-UT2/UVES during the HERES Survey. We were able to determine the thorium abundances with better than 1 sigma confidence for 17 stars, while for 60 stars we derived upper limits. For five stars common with previous studies, our results were in good agreement with the literature results. The thorium abundances span a wide range of about 4.0 dex, and scatter exists in the distribution of log (Th/Eu) ratios for lower metallicity stars, supporting previous studies suggesting the r-process is not universal. We derived ages from the log (Th/Eu) ratios for 12 stars, resulting in large scattered ages, and two stars with significant enhancement of Th relative to Eu are found, indicating the "actinide boost" does not seem to be a rare phenomenon and thus highlighting the risk in using log (Th/Eu) to derive stellar ages.
  •  
10.
  • Yong, D., et al. (författare)
  • The most metal-poor stars. II. Chemical abundances of 190 metal-poor stars including 10 new stars with [Fe/H] ≤ -3.5
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:1, s. 26-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] ≤ -2.5, of which 86 are extremely metal poor, [Fe/H] ≤ -3.0. Our program stars include 10 new objects with [Fe/H] ≤ -3.5. We identify a sample of "normal" metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to "normal" stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus T eff, which likely reflects non-LTE and/or three-dimensional effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy