SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Church George M) srt2:(2010-2014)"

Sökning: WFRF:(Church George M) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keane, Michael, et al. (författare)
  • The Naked Mole Rat Genome Resource : facilitating analyses of cancer and longevity-related adaptations
  • 2014
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 30:24, s. 3558-3560
  • Tidskriftsartikel (refereegranskat)abstract
    • MOTIVATION: The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs. RESULTS: We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat's extraordinary traits, including in regions of p53, and the hyaluronan receptors CD44 and HMMR (RHAMM). Furthermore, we developed a freely available web portal, the Naked Mole Rat Genome Resource (http://www.naked-mole-rat.org), featuring the data and results of our analysis, to assist researchers interested in the genome and genes of the naked mole rat, and also to facilitate further studies on this fascinating species. AVAILABILITY AND IMPLEMENTATION: The Naked Mole Rat Genome Resource is freely available online at http://www.naked-mole-rat.org. This resource is open source and the source code is available at https://github.com/maglab/naked-mole-rat-portal. CONTACT: jp@senescence.info.
  •  
2.
  • Wang, Harris H., et al. (författare)
  • Multiplexed in Vivo His-Tagging of Enzyme Pathways for in Vitro Single-Pot Multienzyme Catalysis
  • 2012
  • Ingår i: ACS Synthetic Biology. - : American Chemical Society (ACS). - 2161-5063. ; 1:2, s. 43-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein pathways are dynamic and highly coordinated spatially and temporally, capable of performing a diverse range of complex chemistries and enzymatic reactions with precision and at high efficiency. Biotechnology aims to harvest these natural systems to construct more advanced in vitro reactions, capable of new chemistries and operating at high yield. Here, we present an efficient Multiplex Automated Genome Engineering (MAGE) strategy to simultaneously modify and co-purify large protein complexes and pathways from the model organism Escherichia coli to reconstitute functional synthetic proteomes in vitro. By application of over 110 MAGE cycles, we successfully inserted hexa-histidine sequences into 38 essential genes in vivo that encode for the entire translation machinery. Streamlined co-purification and reconstitution of the translation, protein complex enabled protein synthesis in vitro. Our approach can be applied to a growing area of applications in in vitro one-pot multienzyme catalysis (MEC) to manipulate or enhance in vitro pathways such as natural product or carbohydrate biosynthesis.
  •  
3.
  • Rosmarin, Dan, et al. (författare)
  • Genetic Markers of Toxicity From Capecitabine and Other Fluorouracil-Based Regimens : Investigation in the QUASAR2 Study, Systematic Review, and Meta-Analysis
  • 2014
  • Ingår i: Journal of Clinical Oncology. - 0732-183X .- 1527-7755. ; 32:10, s. 1031-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Fluourouracil (FU) is a mainstay of chemotherapy, although toxicities are common. Genetic biomarkers have been used to predict these adverse events, but their utility is uncertain.PATIENTS AND METHODS: We tested candidate polymorphisms identified from a systematic literature search for associations with capecitabine toxicity in 927 patients with colorectal cancer in the Quick and Simple and Reliable trial (QUASAR2). We then performed meta-analysis of QUASAR2 and 16 published studies (n = 4,855 patients) to examine the polymorphisms in various FU monotherapy and combination therapy regimens.RESULTS: Global capecitabine toxicity (grades 0/1/2 v grades 3/4/5) was associated with the rare, functional DPYD alleles 2846T>A and *2A (combined odds ratio, 5.51; P = .0013) and with the common TYMS polymorphisms 5'VNTR2R/3R and 3'UTR 6bp ins-del (combined odds ratio, 1.31; P = 9.4 × 10(-6)). There was weaker evidence that these polymorphisms predict toxicity from bolus and infusional FU monotherapy. No good evidence of association with toxicity was found for the remaining polymorphisms, including several currently included in predictive kits. No polymorphisms were associated with toxicity in combination regimens.CONCLUSION: A panel of genetic biomarkers for capecitabine monotherapy toxicity would currently comprise only the four DPYD and TYMS variants above. We estimate this test could provide 26% sensitivity, 86% specificity, and 49% positive predictive value-better than most available commercial kits, but suboptimal for clinical use. The test panel might be extended to include additional, rare DPYD variants functionally equivalent to *2A and 2846A, though insufficient evidence supports its use in bolus, infusional, or combination FU. There remains a need to identify further markers of FU toxicity for all regimens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy