SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chyzy K. T.) srt2:(2010-2014)"

Sökning: WFRF:(Chyzy K. T.) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Iacobelli, M., et al. (författare)
  • Studying Galactic interstellar turbulence through fluctuations in synchrotron emission: First LOFAR Galactic foreground detection
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. 721-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The characteristic outer scale of turbulence (i.e. the scale at which the dominant source of turbulence injects energy to the interstellar medium) and the ratio of the random to ordered components of the magnetic field are key parameters to characterise magnetic turbulence in the interstellar gas, which affects the propagation of cosmic rays within the Galaxy. We provide new constraints to those two parameters. Methods. We use the LOw Frequency ARray (LOFAR) to image the diffuse continuum emission in the Fan region at (l,b) ∼ (137.0, +7.0) at 80′′ × 70′′ resolution in the range [146, 174] MHz. We detect multi-scale fluctuations in the Galactic synchrotron emission and compute their power spectrum. Applying theoretical estimates and derivations from the literature for the first time, we derive the outer scale of turbulence and the ratio of random to ordered magnetic field from the characteristics of these fluctuations. Results. We obtain the deepest image of the Fan region to date and find diffuse continuum emission within the primary beam. The power spectrum displays a power law behaviour for scales between 100 and 8 arcmin with a slope α =-1.84 ± 0.19. We find an upper limit of ∼20 pc for the outer scale of the magnetic interstellar turbulence toward the Fan region, which is in agreement with previous estimates in literature. We also find a variation of the ratio of random to ordered field as a function of Galactic coordinates, supporting different turbulent regimes. Conclusions. We present the first LOFAR detection and imaging of the Galactic diffuse synchrotron emission around 160 MHz from the highly polarized Fan region. The power spectrum of the foreground synchrotron fluctuations is approximately a power law with a slope α ≈-1.84 up to angular multipoles of ≤1300, corresponding to an angular scale of ∼8 arcmin. We use power spectra fluctuations from LOFAR as well as earlier GMRT and WSRT observations to constrain the outer scale of turbulence (Lout) of the Galactic synchrotron foreground, finding a range of plausible values of 10-20 pc. Then, we use this information to deduce lower limits of the ratio of ordered to random magnetic field strength. These are found to be 0.3, 0.3, and 0.5 for the LOFAR, WSRT and GMRT fields considered respectively. Both these constraints are in agreement with previous estimates. © 2013 ESO.
  •  
2.
  • van Weeren, R. J., et al. (författare)
  • Lofar low-band antenna observations of the 3C 295 and boötes fields: Source counts and ultra-steep spectrum sources
  • 2014
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 793:2, s. art. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Low Frequency Array (LOFAR) Low Band observations of the Bootes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam(-1), making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg(2). From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of -0.7. We find that a spectral index scaling of -0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (alpha
  •  
3.
  • De Gasperin, F., et al. (författare)
  • M 87 at metre wavelengths: the LOFAR picture
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 547, s. article no. 56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4x10(9) M-circle dot, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15-30 MHz, 30-77 MHz and 116-162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz-10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intra-cluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radio-spectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of similar or equal to 10 mu G, which increases to similar or equal to 13 mu G in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of similar or equal to 40 Myr, which in turn provides a jet kinetic power of 6-10 x 10(44) erg s(-1).
  •  
4.
  • Morabito, L. K., et al. (författare)
  • Discovery of Carbon Radio Recombination Lines in M82
  • 2014
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 795:2, s. Art. no. L33-
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon radio recombination lines (RRLs) at low frequencies (less than or similar to 500 MHz) trace the cold, diffuse phase of the interstellar medium, which is otherwise difficult to observe. We present the detection of carbon RRLs in absorption in M82 with the Low Frequency Array in the frequency range of 48-64 MHz. This is the first extragalactic detection of RRLs from a species other than hydrogen, and below 1 GHz. Since the carbon RRLs are not detected individually, we cross-correlated the observed spectrum with a template spectrum of carbon RRLs to determine a radial velocity of 219 km s(-1). Using this radial velocity, we stack 22 carbon-alpha transitions from quantum levels n = 468-508 to achieve an 8.5 sigma detection. The absorption line profile exhibits a narrow feature with peak optical depth of 3x10(-3) and FWHM of 31 km s(-1). Closer inspection suggests that the narrow feature is superimposed on a broad, shallow component. The total line profile appears to be correlated with the 21 cm Hi line profile reconstructed from Hi absorption in the direction of supernova remnants in the nucleus. The narrow width and centroid velocity of the feature suggests that it is associated with the nuclear starburst region. It is therefore likely that the carbon RRLs are associated with cold atomic gas in the direction of the nucleus of M82.
  •  
5.
  •  
6.
  • Rottgering, H., et al. (författare)
  • LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters
  • 2011
  • Ingår i: Journal of Astrophysics and Astronomy. - : Springer Science and Business Media LLC. - 0250-6335 .- 0973-7758. ; 32:4, s. 557-566
  • Tidskriftsartikel (refereegranskat)abstract
    • At very low frequencies, the new pan-European radio telescope LOFAR is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. The revolutionary APERTIF-phased arrays that are about to be installed on the Westerbork radio telescope (WSRT) will dramatically increase the survey speed for the WSRT. Combined surveys with these two facilities will deeply chart the northern sky over almost two decades in radio frequency from similar to 15 up to 1400 MHz. Here we briefly describe some of the capabilities of these new facilities and what radio surveys are planned to study fun-damental issues related to the formation and evolution of galaxies and clusters of galaxies. In the second part we briefly review some recent observational results directly showing that diffuse radio emission in clusters traces shocks due to cluster mergers. As these diffuse radio sources are relatively bright at low frequencies, LOFAR should be able to detect thousands of such sources up to the epoch of cluster formation. This will allow addressing many question about the origin and evolution of shocks and magnetic fields in clusters. At the end we briefly review some of the first and very preliminary LOFAR results on clusters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy