SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cindolo F.) srt2:(2005-2009)"

Search: WFRF:(Cindolo F.) > (2005-2009)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
3.
  • Aaron, F. D., et al. (author)
  • Multi-leptons with high transverse momentum at HERA
  • 2009
  • In: Journal of High Energy Physics. - : Springer Science and Business Media LLC. - 1029-8479. ; :10
  • Journal article (peer-reviewed)abstract
    • Events with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb(-1). The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton events are observed in e(+)p collision data with a scalar sum of the lepton transverse momenta above 100 GeV while 1.94 +/- 0.17 events are expected. Such events are not observed in e(-)p collisions for which 1.19 +/- 0.12 are predicted. Total visible and differential di-electron and di-muon photoproduction cross sections are extracted in a restricted phase space dominated by photon-photon collisions.
  •  
4.
  • Lundquist, J., et al. (author)
  • The PAMELA Calorimeter Identification Capabilities
  • 2005
  • In: Proceedings of the 29th International Cosmic Ray Conference, vol 3:OG1. ; , s. 305-308
  • Conference paper (peer-reviewed)abstract
    • A silicon-tungsten imaging calorimeter has been designed, built and successfully integrated in the PAMELA satellite-bome apparatus. The main physics task of the experiment is the measurement of the flux of antiprotons, positrons and light nuclei in the cosmic radiation. The purpose of the calorimeter is to separate antiprotons and positrons from the vast background of cosmic-ray electrons and protons, respectively. In this work we present the identification capabilities of the calorimeter obtained using both Monte Carlo and test beam data. We show that the calorimeter can provide a proton rejection factor of about 105 while keeping a similar to 90% efficiency in selecting electrons and positrons. The PAMELA calorimeter is therefore able to provide the identification power needed to reach the primary scientific objectives of PAMELA.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view