SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cocco P) srt2:(2010-2014)"

Sökning: WFRF:(Cocco P) > (2010-2014)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pellizzoni, A., et al. (författare)
  • Detection of Gamma-Ray Emission from the Vela Pulsar Wind Nebula with AGILE
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 327:5966, s. 663-665
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.
  •  
2.
  • Feroci, M., et al. (författare)
  • Monitoring the hard X-ray sky with SuperAGILE
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 510, s. A9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23 April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. Aims. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its similar to steradian-wide field of view and its similar to 15 mCrab day-sensitivity, SuperAGILE is also well suited to the long-term monitoring of Galactic compact objects and the detection of bright transients. Methods. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by means of experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. Results. We report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009. The scientific observations started in mid-July 2007, with the science verification phase, continuing during the complete AGILE Cycle 1 and the first similar to half of Cycle 2. Despite the largely non-uniform sky coverage, due to the pointing strategy of the AGILE mission, a few tens of Galactic sources were monitored, sometimes for unprecedently long continuous periods, leading to the detection also of several bursts and outbursts. Approximately one gamma ray burst per month was detected and localized, allowing for prompt multi-wavelength observations. A few extragalactic sources in bright states were occasionally detected as well. The light curves of sources measured by SuperAGILE are made publicly available on the web in almost real-time. To enable a proper scientific use of these, we provide the reader with the relevant scientific and technical background.
  •  
3.
  • Marisaldi, M., et al. (författare)
  • Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:3, s. A00E13-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection by the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite of terrestrial gamma ray flashes (TGFs) obtained with the minicalorimeter (MCAL) detector operating in the energy range 0.3-100 MeV. We select events typically lasting a few milliseconds with spectral and directional selections consistent with the TGF characteristics previously reported by other space missions. During the period 1 June 2008 to 31 March 2009 we detect 34 high-confidence events showing millisecond durations and a geographical distribution peaked over continental Africa and Southeast Asia. For the first time, AGILE-MCAL detects photons associated with TGF events up to 40 MeV. We determine the cumulative spectral properties of the spectrum in the range 0.5-40 MeV, which can be effectively described by a Bremsstrahlung spectrum. We find that both the TGF cumulative spectral properties and their geographical distribution are in good agreement with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) results.
  •  
4.
  • Tavani, M., et al. (författare)
  • Direct Evidence for Hadronic Cosmic-Ray Acceleration in the Supernova Remnant IC 443
  • 2010
  • Ingår i: The Astrophysical Journal. Letters. - 2041-8205. ; 710:2, s. L151-L155
  • Tidskriftsartikel (refereegranskat)abstract
    • The supernova remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray, and gamma-ray energy emissions. In this Letter, we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV-3 GeV is detected across the SNR with its prominent maximum (source "A") localized in the northeastern shell with a flux F = (47 +/- 10) x 10(-8) photons cm(-2) s(-1) above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source "A" is not coincident with the TeV source located 0.4. away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma rays in the range 0.1-10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of cospatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud "E") provides a remarkable "target" for nucleonic interactions of accelerated hadrons; our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.
  •  
5.
  • Ankowski, A., et al. (författare)
  • Energy reconstruction of electromagnetic showers from Ν0 decays with the ICARUS T600 liquid argon TPC
  • 2010
  • Ingår i: Acta Physica Polonica, Series B.. - 1509-5770 .- 0587-4254. ; 41:1, s. 103-125
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of π 0 mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The (γγ) invariant mass was found to be consistent with the value of the π 0 mass. The resolution of the reconstructed π 0 mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a π 0 mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photo-multiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactions. Hence a number of candidate π 0 events were heavily contaminated by other tracks and had to be rejected. Monte Carlo simulations of events with π 0 production in hadronic and neutrino interactions confirmed the validity of the shower energy and shower direction reconstruction methods applied to the real data.
  •  
6.
  • Ankowski, A, et al. (författare)
  • Energy reconstruction of electromagnetic showers from π0 decays with the ICARUS T600 liquid argon TPC
  • 2010
  • Ingår i: Acta Physica Polonica B. - : Jagellonian University. - 0587-4254 .- 1509-5770. ; 41:1, s. 103-125
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of π0 mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The (γ,γ) invariant mass was found to be consistent with the value of the π0 mass. The resolution of the reconstructed π0 mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a π0 mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photo-multiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactions. Hence a number of candidate π0 events were heavily contaminated by other tracks and had to be rejected. Monte Carlo simulations of events with π0 production in hadronic and neutrino interactions confirmed the validity of the shower energy and shower direction reconstruction methods applied to the real data.
  •  
7.
  • Chen, A. W., et al. (författare)
  • Calibration of AGILE-GRID with in-flight data and Monte Carlo simulations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. A37-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. AGILE is a γ-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The γ-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims. We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing instrument response functions (IRFs) for the effective area (A eff), energy dispersion probability (EDP), and point spread function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods. We performed Monte Carlo simulations at different γ-ray energies and incident angles, including background rejection filters and Kalman filter-based γ-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results. The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions. Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the AGILE Science Data Center since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release.
  •  
8.
  • Giuliani, A., et al. (författare)
  • AGILE Detection of Delayed Gamma-ray Emission From the Short Gamma-Ray Burst GRB 090510
  • 2010
  • Ingår i: Astrophysical Journal Letters. - 2041-8205. ; 708:2, s. L84-L88
  • Tidskriftsartikel (refereegranskat)abstract
    • Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting similar to 200 ms and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV; in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t(-1.3) and a broadband spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index alpha similar or equal to 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.
  •  
9.
  • Longo, F., et al. (författare)
  • Upper limits on the high-energy emission from gamma-ray bursts observed by AGILE-GRID
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 547, s. A95-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detection and the characterization of the highenergy emission component from individual gamma-ray bursts (GRBs) is one of the key science objectives of the currently operating gamma-ray satellite AGILE, launched in April 2007. In its first two years of operation AGILE detected three GRBs with photons of energy larger than 30 MeV. One more GRB was detected in AGILE third operation year, while operating in spinning mode. Aims. For the 64 other GRBs localized during the period July 2007 to October 2009 in the field of view of the AGILE Gamma-Ray Imaging Detector (GRID), but not detected by this instrument, we estimate the count and flux upper limits on the GRB high energy emission in the AGILE-GRID energy band (30 MeV-3 GeV). Methods. To calculate the count upper limits, we adopted a Bayesian approach. The flux upper limits are derived using several assumptions on the high-energy spectral behavior. For 28 GRBs with available prompt spectral information, a flux upper limit and the comparison with the expected flux estimated from spectral extrapolation of the Band spectrum to the 30 MeV-3 GeV band are provided. Moreover, upper limits on the flux under the assumption of an extra power law component dominating the 30 MeV-3 GeV band are calculated for all GRBs and considering four different values for the spectral photon index. Finally, we performed a likelihood upper limit on the possible delayed emission up to 1 h after the GRB. Results. The estimated flux upper limits range between 1 × 10 -4 and ∼2 × 10 -2 photons cm -2 s -1 and generally lie above the flux estimated from the extrapolation of the prompt emission in the 30 MeV-3 GeV band. A notable case is GRB 080721, where the AGILE-GRID upper limit suggests a steeper spectral index or the presence of a cut-off in the high energy part of the Band prompt spectrum. The four GRBs detected by AGILE-GRID show high-energy (30 MeV-3 GeV) to low-energy (1 keV-10 MeV) fluence ratios similar to those estimated in this paper for the 64 GRBs without GRID detection, favoring the possibility that AGILE-GRID detected only high-fluence, hard GRBs. From the flux upper limits derived in this work we put some constraint on high-energy radiation from the afterglow emission and from synchrotron self Compton emission in internal shocks.
  •  
10.
  • Rubbia, C, et al. (författare)
  • Underground operation of the ICARUS T600 LAr-TPC : first results
  • 2011
  • Ingår i: Journal of Instrumentation. ; 6:07
  • Tidskriftsartikel (refereegranskat)abstract
    • Important open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the Standard Model of particle interactions. Addressing these questions requires a new generation of massive particle detectors to explore the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 tons) example of a new generation of detectors able to combine the imaging capabilities of the old famous “bubble chamber” with the excellent energy measurement of huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory and is used to study cosmic rays, neutrino oscillations and the proton decay. The potential for doing physics of this novel telescope is presented through a few examples of neutrino interactions reconstructed with unprecedented detail. Detector design and early operation are also reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy