SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Collins Malcolm) srt2:(2015-2019)"

Sökning: WFRF:(Collins Malcolm) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Freitag, Daniel F., et al. (författare)
  • Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis
  • 2015
  • Ingår i: The Lancet Diabetes & Endocrinology. - 2213-8595. ; 3:4, s. 243-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1 alpha and IL-1 beta); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p=9.3 x 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1,7%; p=3.5 x 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p=7.7 x 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p=1.8 x 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p=3.9 x 10(-10)). Perallele odds ratios were 0.97 (0.95-0.99; p=9.9 x 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p=0.47) for type 2 diabetes, 1.00 (0.98-1.02; p=0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p=1.8 x 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1 alpha/beta inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Copyright (C) The Interleukin 1 Genetics Consortium. Open Access article distributed under the terms of CC-BY-NC-ND.
  •  
2.
  • Suijkerbuijk, Mathijs A. M., et al. (författare)
  • Functional polymorphisms within the inflammatory pathway regulate expression of extracellular matrix components in a genetic risk dependent model for anterior cruciate ligament injuries.
  • 2019
  • Ingår i: Journal of Science and Medicine in Sport. - : Elsevier. - 1440-2440 .- 1878-1861. ; 22:11, s. 1219-1225
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To investigate the functional effect of genetic polymorphisms of the inflammatory pathway on structural extracellular matrix components (ECM) and the susceptibility to an anterior cruciate ligament (ACL) injury.DESIGN: Laboratory study, case-control study.METHODS: Eight healthy participants were genotyped for interleukin (IL)1B rs16944 C>T and IL6 rs1800795 G>C and classified into genetic risk profile groups. Differences in type I collagen (COL1A1), type V collagen (COL5A1), biglycan (BGN) and decorin (DCN) gene expression were measured in fibroblasts either unstimulated or following IL-1β, IL-6 or tumor necrosis factor (TNF)-α treatment. Moreover, a genetic association study was conducted in: (i) a Swedish cohort comprised of 116 asymptomatic controls (CON) and 79 ACL ruptures and (ii) a South African cohort of 100 CONs and 98 ACLs. Participants were genotyped for COL5A1 rs12722 C>T, IL1B rs16944 C>T, IL6 rs1800795 G>C and IL6R rs2228145 G>C.RESULTS: IL1B high-risk fibroblasts had decreased BGN (p=0.020) and COL5A1 (p=0.012) levels after IL-1β stimulation and expressed less COL5A1 (p=0.042) following TNF-α treatment. Similarly, unstimulated IL6 high-risk fibroblasts had lower COL5A1 (p=0.012) levels than IL6 low-risk fibroblasts. In the genetic association study, the COL5A1-IL1B-IL6 T-C-G (p=0.034, Haplo-score 2.1) and the COL5A1-IL1B-IL6R T-C-A (p=0.044, Haplo-score: 2.0) combinations were associated with an increased susceptibility to ACL injury in the Swedish cohort when only male participants were evaluated.CONCLUSIONS: This study shows that polymorphisms within genes of the inflammatory pathway modulate the expression of structural and fibril-associated ECM components in a genetic risk depended manner, contributing to an increased susceptibility to ACL injuries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy