SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cordier A.) srt2:(2020-2022)"

Sökning: WFRF:(Cordier A.) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sagova-Mareckova, M., et al. (författare)
  • Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring
  • 2021
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 191
  • Forskningsöversikt (refereegranskat)abstract
    • Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems. (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ )
  •  
2.
  • Rodriguez, Sébastien, et al. (författare)
  • Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability : titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 911-973
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s. 
  •  
3.
  • Speyer, R, et al. (författare)
  • Neurostimulation in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analysis of Randomised Controlled Trials-Part II: Brain Neurostimulation
  • 2022
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To assess the effects of brain neurostimulation (i.e., repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]) in people with oropharyngeal dysphagia (OD). Methods. Systematic literature searches were conducted in four electronic databases (CINAHL, Embase, PsycINFO, and PubMed) to retrieve randomised controlled trials (RCTs) only. Using the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2), the methodological quality of included studies was evaluated, after which meta-analysis was conducted using a random-effects model. Results. In total, 24 studies reporting on brain neurostimulation were included: 11 studies on rTMS, 9 studies on tDCS, and 4 studies on combined neurostimulation interventions. Overall, within-group meta-analysis and between-group analysis for rTMS identified significant large and small effects in favour of stimulation, respectively. For tDCS, overall within-group analysis and between-group analysis identified significant large and moderate effects in favour of stimulation, respectively. Conclusion. Both rTMS and tDCS show promising effects in people with oropharyngeal dysphagia. However, comparisons between studies were challenging due to high heterogeneity in stimulation protocols and experimental parameters, potential moderators, and inconsistent methodological reporting. Generalisations of meta-analyses need to be interpreted with care. Future research should include large RCTs using standard protocols and reporting guidelines as achieved by international consensus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy