SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coreno M.) srt2:(2020-2024)"

Sökning: WFRF:(Coreno M.) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Makos, I., et al. (författare)
  • Attosecond photoelectron spectroscopy using high-harmonic generation and seeded free-electron lasers
  • 2023
  • Ingår i: 2023 Photonics North, PN 2023. - 9798350326734
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we use attosecond time-resolved techniques to investigate photoionization dynamics on its natural timescale, employing both high harmonic generation and seeded free-electron lasers to generate extreme ultraviolet attosecond pulse trains for our studies. With the former approach, we examine the role of nuclear motion in molecular photoionization dynamics, while with the latter we introduce a novel attosecond timing tool for single-shot characterization of the relative phase between the XUV and the infrared field.
  •  
2.
  • Maroju, Praveen Kumar, et al. (författare)
  • Attosecond coherent control of electronic wave packets in two-colour photoionization using a novel timing tool for seeded free-electron laser
  • 2023
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 17, s. 200-207
  • Tidskriftsartikel (refereegranskat)abstract
    • In ultrafast spectroscopy, the temporal resolution of time-resolved experiments depends on the duration of the pump and probe pulses, and on the control and characterization of their relative synchronization. Free-electron lasers operating in the extreme ultraviolet and X-ray spectral regions deliver pulses with femtosecond and attosecond duration in a broad array of pump-probe configurations to study a wide range of physical processes. However, this flexibility, together with the large dimensions and high complexity of the experimental set-ups, limits control of the temporal delay to the femtosecond domain, thus precluding a time resolution below the optical cycle. Here we demonstrate a novel single-shot technique able to determine the relative synchronization between an attosecond pulse train-generated by a seeded free-electron laser-and the optical oscillations of a near-infrared field, with a resolution of one atomic unit (24 as). Using this attosecond timing tool, we report the first example of attosecond coherent control of photoionization in a two-colour field by manipulating the phase of high-order near-infrared transitions.
  •  
3.
  • De Angelis, D., et al. (författare)
  • A sub-100 nm thickness flat jet for extreme ultraviolet to soft X-ray absorption spectroscopy
  • 2024
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 31:3 Pt, s. 605-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown. 
  •  
4.
  • Ingle, R. A., et al. (författare)
  • Carbon K-edge x-ray emission spectroscopy of gas phase ethylenic molecules
  • 2022
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 55:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the C K-edge x-ray absorption spectra and the resonant (RXES) and non-resonant (NXES) x-ray emission spectra of ethylene, allene and butadiene in the gas phase. The RXES and NXES show clear differences for the different molecules. Overall both types of spectra are more structured for ethylene and allene, than for butadiene. Using density functional theory–restricted open shell configuration interaction single calculations, we simulate the spectra with remarkable agreement with the experiment. We identify the spectral features as being due to transitions involving localised 1s orbitals. For allene, there are distinct spectral bands that reflect transitions predominantly from either the central or terminal carbon atoms. These results are discussed in the context of ultrafast x-ray studies aimed at detecting the passage through conical intersections in polyatomic molecules.
  •  
5.
  • Žitnik, M., et al. (författare)
  • Atomic two-color XUV interferometer
  • 2023
  • Ingår i: 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023. - 9798350345995
  • Konferensbidrag (refereegranskat)abstract
    • We extend our recently published work which demonstrated the coherent control of population of 2s21S doubly excited state in helium by tuning the interference of ω1 + ω1 and ω3 − ω1 two-photon excitation paths [1]. The maximum yield of electrons from 2s2 autoionization was observed when the two-color phase difference matched phase difference of the atomic amplitudes describing the two alternative excitation paths. A displacement of position of the maximum yield in the same reference frame therefore signals the presence of an additional phase shifting agent along any of the two paths and also provides a measure of the corresponding phase shift. This constitutes the operational principle of an atomic XUV interferometer which is comparable to the well-known RABBITT method based on using a combination of XUV and IR light pulses [2]. The work was performed at LDM beamline at the free-electron-laser facility FERMI in Trieste (Italy). The phase difference of the two components of the light pulse was set by slightly delaying the ω3 emission from the last three undulators with respect to the ω1 emission produced by the first three undulators and this was achieved by delaying the generating electron bunch by properly adjusted magnetic chicane in between the two undulator sections.
  •  
6.
  • Zitnik, M., et al. (författare)
  • Interference of two-photon transitions induced by XUV light
  • 2022
  • Ingår i: Optica. - : Optica Publishing Group. - 2334-2536. ; 9:7, s. 692-700
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative phase of first (omega(1)) and third harmonics (omega(3)) extreme ultraviolet light pulses was varied to control the population of the 2s(2) state in helium through the interference of omega(1) + omega(1) and omega(3) - omega(1) two-photon excitation paths. The population was monitored by observing the total electron yield due to the 2s(2) autoionization decay. Maximum yield occurs when the relative phase of the two harmonics matches the phase difference of complex atomic amplitudes governing the two excitation paths. The calculated trend of atomic phase differences agrees well with the measured data in the spectral region of the resonance, provided that time-reversed -omega(1) + omega(3) path is also taken into account. These results open the way to accessing phase differences of two-photon ionization paths involving energetically distant intermediate states and to perform interferometry in the extreme ultraviolet range by monitoring final state populations. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
  •  
7.
  • Bernes, E., et al. (författare)
  • S 2p and P 2p Core Level Spectroscopy of PPT Ambipolar Material and Its Building Block Moieties
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:127, s. 14510-14520
  • Tidskriftsartikel (refereegranskat)abstract
    • The near-edge X-ray absorption fine structure (NEXAFS and X-ray photoelectron (XP) spectra of gas-phase 2,8-bis-(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) and triphenylphosphine oxide (TPPO) have been measured at the S and P L-II,L-III-edge regions. The time-dependent density functional theory (TDDFT) based on the relativistic two-component zeroth-order regular approximation approach has been used to provide an assignment of the experimental spectra, giving the contribution of the spin-orbit splitting and of the molecular-field splitting to the sulfur and phosphor binding energies. Computed XP and NEXAFS spectra agree well with the experimental measurements. In going from dibenzothiophene and TPPO to PPT, the nature of the most intense S 2p and P 2p NEXAFS features are preserved; this trend suggests that the electronic and geometric behaviors of the S and P atoms in the two building block moieties are conserved in the more complex system of PPT. This work enables us to shed some light onto the structure of the P-O bond, a still highly debated topic in the chemical literature. Since the S 2p and P 2p NEXAFS intensities provide specific information on the higher-lying localized sigma*(C-S) and sigma*(P-O) virtual MOs, we have concluded that P 3d AOs are not involved in the formation of the P-O bond. Moreover, the results support the mechanism of negative hyperconjugation, by showing that transitions toward sigma*(P-O) states occur at lower energies with respect to those toward it pi*(P-O) states.
  •  
8.
  • Borne, Kurtis D., et al. (författare)
  • Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
  • 2024
  • Ingår i: NATURE CHEMISTRY. - 1755-4330 .- 1755-4349. ; 16, s. 499-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy