SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cornelis Marilyn C.) srt2:(2015-2019)"

Sökning: WFRF:(Cornelis Marilyn C.) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
2.
  • Pattaro, Cristian, et al. (författare)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
3.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
4.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
5.
  • Gorski, Mathias, et al. (författare)
  • 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
  •  
6.
  • Ong, Jue-Sheng, et al. (författare)
  • Assessment of moderate coffee consumption and risk of epithelial ovarian cancer : a Mendelian randomization study
  • 2018
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 1464-3685 .- 0300-5771. ; 47:2, s. 450-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Coffee consumption has been shown to be associated with various health outcomes in observational studies. However, evidence for its association with epithelial ovarian cancer (EOC) is inconsistent and it is unclear whether these associations are causal.Methods: We used single nucleotide polymorphisms associated with (i) coffee and (ii) caffeine consumption to perform Mendelian randomization (MR) on EOC risk. We conducted a two-sample MR using genetic data on 44 062 individuals of European ancestry from the Ovarian Cancer Association Consortium (OCAC), and combined instrumental variable estimates using a Wald-type ratio estimator.Results: For all EOC cases, the causal odds ratio (COR) for genetically predicted consumption of one additional cup of coffee per day was 0.92 [95% confidence interval (CI): 0.79, 1.06]. The COR was 0.90 (95% CI: 0.73, 1.10) for high-grade serous EOC. The COR for genetically predicted consumption of an additional 80 mg caffeine was 1.01 (95% CI: 0.92, 1.11) for all EOC cases and 0.90 (95% CI: 0.73, 1.10) for high-grade serous cases.Conclusions: We found no evidence indicative of a strong association between EOC risk and genetically predicted coffee or caffeine levels. However, our estimates were not statistically inconsistent with earlier observational studies and we were unable to rule out small protective associations.
  •  
7.
  • Cornelis, Marilyn C, et al. (författare)
  • Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior
  • 2016
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 25:24, s. 5472-5482
  • Tidskriftsartikel (refereegranskat)abstract
    • Caffeine is the most widely consumed psychoactive substance in the world and presents with wide interindividual variation in metabolism. This variation may modify potential adverse or beneficial effects of caffeine on health. We conducted a genome-wide association study (GWAS) of plasma caffeine, paraxanthine, theophylline, theobromine and paraxanthine/caffeine ratio among up to 9,876 individuals of European ancestry from six population-based studies. A single SNP at 6p23 (near CD83) and several SNPs at 7p21 (near AHR), 15q24 (near CYP1A2) and 19q13.2 (near CYP2A6) met GW-significance (P < 5 × 10(-8)) and were associated with one or more metabolites. Variants at 7p21 and 15q24 associated with higher plasma caffeine and lower plasma paraxanthine/caffeine (slow caffeine metabolism) were previously associated with lower coffee and caffeine consumption behavior in GWAS. Variants at 19q13.2 associated with higher plasma paraxanthine/caffeine (slow paraxanthine metabolism) were also associated with lower coffee consumption in the UK Biobank (n = 94 343, P < 1.0 × 10(-6)). Variants at 2p24 (in GCKR), 4q22 (in ABCG2) and 7q11.23 (near POR) that were previously associated with coffee consumption in GWAS were nominally associated with plasma caffeine or its metabolites. Taken together, we have identified genetic factors contributing to variation in caffeine metabolism and confirm an important modulating role of systemic caffeine levels in dietary caffeine consumption behavior. Moreover, candidate genes identified encode proteins with important clinical functions that extend beyond caffeine metabolism.
  •  
8.
  • Cornelis, Marilyn C, et al. (författare)
  • Targeted proteomic analysis of habitual coffee consumption
  • 2018
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 283:2, s. 200-211
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Coffee drinking has been implicated in mortality and a variety of diseases but potential mechanisms underlying these associations are unclear. Large-scale systems epidemiological approaches may offer novel insights to mechanisms underlying associations of coffee with health.OBJECTIVE: We performed an analysis of known and novel protein markers linked to cardiovascular disease and their association with habitual coffee intake in the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS, n=816) and followed-up top proteins in the Uppsala Longitudinal Study of Adult Men (ULSAM, n=635) and EpiHealth (n=2418).METHODS: In PIVUS and ULSAM, coffee intake was measured by 7-day dietary records while a computer-based food frequency questionnaire was used in EpiHealth. Levels of up to 80 proteins were assessed in plasma by a proximity extension assay.RESULTS: Four protein-coffee associations adjusted for age, sex, smoking and BMI, met statistical significance in PIVUS (FDR<5%, P<2.31×10(-3) ): leptin (LEP), chitinase-3-like protein 1 (CHI3L), Tumor necrosis factor (TNF) receptor 6 and TNF-related apoptosis-inducing ligand. The inverse association between coffee intake and LEP replicated in ULSAM (β, -0.042 SD per cup of coffee, P=0.028) and EpiHealth (β, -0.025 SD per time of coffee, P=0.004). The negative coffee-CHI3L association replicated in EpiHealth (β, -0.07, P=1.15×10(-7) ), but not in ULSAM (β, -0.034, P=0.16).CONCLUSIONS: The current study supports an inverse association between coffee intake and plasma LEP and CHI3L1 levels. The coffee-CHI3L1 association is novel and warrants further investigation given links between CHI3L1 and health conditions that are also potentially influenced by coffee. 
  •  
9.
  • Li, Man, et al. (författare)
  • SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function
  • 2017
  • Ingår i: Journal of the American Society of Nephrology: JASN. - 1533-3450. ; 28:3, s. 981-994
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10-7), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10-8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.
  •  
10.
  • Shungin, Dmitry, et al. (författare)
  • Using genetics to test the causal relationship of total adiposity and periodontitis : Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium
  • 2015
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 638-650
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis. Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI: 1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Lind, Lars (6)
Hu, Frank B. (5)
Chasman, Daniel I. (5)
Gieger, Christian (5)
Metspalu, Andres (5)
Loos, Ruth J F (5)
visa fler...
Li, Man (5)
Kraft, Peter (4)
Ridker, Paul M. (4)
Mohlke, Karen L (4)
Strauch, Konstantin (4)
Froguel, Philippe (4)
Gustafsson, Stefan (4)
Homuth, Georg (4)
Salomaa, Veikko (3)
Imboden, Medea (3)
Melander, Olle (3)
Wareham, Nicholas J. (3)
Johansson, Åsa (3)
Laakso, Markku (3)
Sennblad, Bengt (3)
van Duijn, Cornelia ... (3)
Rose, Lynda M (3)
Pedersen, Nancy L (3)
Boehnke, Michael (3)
Hamsten, Anders (3)
Scott, Robert A (3)
Ingelsson, Erik (3)
Kähönen, Mika (3)
Lehtimäki, Terho (3)
Tuomilehto, Jaakko (3)
Waldenberger, Melani ... (3)
Martin, Nicholas G. (3)
Gyllensten, Ulf (3)
Meitinger, Thomas (3)
Eriksson, Johan G. (3)
Schmidt, Reinhold (3)
Schmidt, Helena (3)
Kovacs, Peter (3)
Harris, Tamara B (3)
Launer, Lenore J (3)
Lohman, Kurt (3)
Morris, Andrew D (3)
Uitterlinden, André ... (3)
Völzke, Henry (3)
Gudnason, Vilmundur (3)
Zeggini, Eleftheria (3)
Lyytikäinen, Leo-Pek ... (3)
Dupuis, Josée (3)
Pankow, James S. (3)
visa färre...
Lärosäte
Uppsala universitet (8)
Lunds universitet (7)
Karolinska Institutet (7)
Umeå universitet (4)
Stockholms universitet (2)
Göteborgs universitet (1)
visa fler...
Handelshögskolan i Stockholm (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy