SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cornelissen Johannes H. C.) srt2:(2015-2019)"

Sökning: WFRF:(Cornelissen Johannes H. C.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elumeeva, Tatiana G., et al. (författare)
  • Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions?
  • 2018
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 29:4, s. 715-725
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsMycorrhizae may be a key element of plant nutritional strategies and of carbon and nutrient cycling. Recent research suggests that in natural conditions, intensity of mycorrhizal colonization should be considered an important plant feature. How are inter-specific variations in mycorrhizal colonization rate, plant relative growth rate (RGR) and leaf litter decomposability related? Is (arbuscular) mycorrhizal colonization linked to the dominance of plant species in nutrient-stressed ecosystems? LocationTeberda State Biosphere Reserve, northwest Caucasus, Russia. MethodsWe measured plant RGR under mycorrhizal limitation and under natural nutrition conditions, together with leaf litter decomposability and field intensity of mycorrhizal colonization across a wide range of plant species, typical for alpine communities of European mountains. We applied regression analysis to test whether the intensity of mycorrhizal colonization is a good predictor of RGR and decomposition rate, and tested how these traits predict plant dominance in communities. ResultsForb species with a high level of field mycorrhizal colonization had lower RGR under nutritional and mycorrhizal limitation, while grasses were unaffected. Litter decomposition rate was not related to the intensity of mycorrhizal colonization. Dominant species mostly had a higher level of mycorrhizal colonization and lower RGR without mycorrhizal colonization than subordinate species, implying that they were more dependent on mycorrhizal symbionts. There were no differences in litter decomposability. ConclusionsIn alpine herbaceous plant communities dominated by arbuscular mycorrhizae, nutrient dynamics are to a large extent controlled by mycorrhizal symbiosis. Intensity of mycorrhizal colonization is a negative predictor for whole plant RGR. Our study highlights the importance of mycorrhizal colonization as a key trait underpinning the role of plant species in carbon and nutrient dynamics in nutrient-limited herbaceous plant communities.
  •  
2.
  • Hicks Pries, Caitlin E., et al. (författare)
  • Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:12, s. 4508-4519
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems.
  •  
3.
  • Krab, Eveline J, et al. (författare)
  • A simple experimental set-up to disentangle the effects of altered temperature and moisture regimes on soil organisms
  • 2015
  • Ingår i: Methods in Ecology and Evolution. - : Wiley-Blackwell. - 2041-210X. ; 6:10, s. 1159-1168
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate manipulation experiments in the field and laboratory incubations are common methods to study the impact of climate change on soils and their biota. However, both types of methods have drawbacks either on their mechanistic interpretation or ecological relevance. We propose an experimental set-up that combines the best of both methods and can be easily obtained by modifying widely available Tullgren soil fauna extractors. This set-up creates or alters temperature and moisture gradients within intact field soil cores, after which soil biota, their activity and vertical movements can be studied. We assessed the performance and demonstrated the applicability of this set-up through a case study on Collembola response to changes in microclimatic gradients in peat bogs. Warming created a vertical temperature gradient of 14 degrees C in peat cores without varying soil moisture conditions, while at a given temperature regime, precipitation and drought treatments shifted natural soil moisture gradients to 'wetter' and 'drier', respectively. This allowed for disentangling interacting warming and moisture effects on soil fauna. In our case study, Collembola communities showed peat layer-specific responses to these climate treatments. Warming decreased Collembola density and altered community composition in the shallowest layer, whereas precipitation increase affected Collembola community composition in the deepest layer. We showed that climate change can have layer-specific effects on soil organisms that are 'hidden' by not taking microclimatic vertical gradients into account. This experimental set-up facilitates studying (multitrophic) organism responses to climate changes, with only a small adjustment of equipment that is often already present in soil ecology laboratories. Moreover, this set-up can be easily customized to study many more other research questions related to wide-ranging organisms and ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy