SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coulter C.) srt2:(2020-2024)"

Sökning: WFRF:(Coulter C.) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinyanont, S., et al. (författare)
  • Keck Infrared Transient Survey. I. Survey Description and Data Release 1
  • 2024
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Keck Infrared Transient Survey, a NASA Key Strategic Mission Support program to obtain near-infrared (NIR) spectra of astrophysical transients of all types, and its first data release, consisting of 105 NIR spectra of 50 transients. Such a data set is essential as we enter a new era of IR astronomy with the James Webb Space Telescope (JWST) and the upcoming Nancy Grace Roman Space Telescope (Roman). NIR spectral templates will be essential to search JWST images for stellar explosions of the first stars and to plan an effective Roman SN Ia cosmology survey, both key science objectives for mission success. Between 2022 February and 2023 July, we systematically obtained 274 NIR spectra of 146 astronomical transients, representing a significant increase in the number of available NIR spectra in the literature. Here, we describe the first release of data from the 2022A semester. We systematically observed three samples: a flux-limited sample that includes all transients <17 mag in a red optical band (usually ZTF r or ATLAS o bands); a volume-limited sample including all transients within redshift z < 0.01 (D ≈ 50 Mpc); and an SN Ia sample targeting objects at phases and light-curve parameters that had scant existing NIR data in the literature. The flux-limited sample is 39% complete (60% excluding SNe Ia), while the volume-limited sample is 54% complete and is 79% complete to z = 0.005. Transient classes observed include common Type Ia and core-collapse supernovae, tidal disruption events, luminous red novae, and the newly categorized hydrogen-free/helium-poor interacting Type Icn supernovae. We describe our observing procedures and data reduction using PypeIt, which requires minimal human interaction to ensure reproducibility.
  •  
2.
  •  
3.
  • Barna, Barnabas, et al. (författare)
  • SN 2019muj-a well-observed Type Iax supernova that bridges the luminosity gap of the class
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:1, s. 1078-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • We present early-time (t < +50 d) observations of SN 2019muj (=ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from similar to 5 d before maximum light [t(max)(B) on 58707.8 MJD] and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light-curve peaks at 1.05 x 10(42) erg s(-1) and indicates that only 0.031 M-circle dot of Ni-56 was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of M-V = -16.4 mag. The estimated date of explosion is t(0) = 58698.2 MJD and implies a short rise time of t(rise) = 9.6 d in B band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.
  •  
4.
  •  
5.
  • Jencson, Jacob E., et al. (författare)
  • AT 2019qyl in NGC 300 : Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nova eruptions, thermonuclear explosions on the surfaces of white dwarfs (WDs), are now recognized to be among the most common shock-powered astrophysical transients. We present the early discovery and rapid ultraviolet (UV), optical, and infrared (IR) temporal development of AT 2019qyl, a recent nova in the nearby Sculptor Group galaxy NGC 300. The light curve shows a rapid rise lasting ≲1 day, reaching a peak absolute magnitude of MV = −9.2 mag and a very fast decline, fading by 2 mag over 3.5 days. A steep dropoff in the light curves after 71 days and the rapid decline timescale suggest a low-mass ejection from a massive WD with MWD ≳ 1.2 M⊙. We present an unprecedented view of the early spectroscopic evolution of such an event. Three spectra prior to the peak reveal a complex, multicomponent outflow giving rise to internal collisions and shocks in the ejecta of an He/N-class nova. We identify a coincident IR-variable counterpart in the extensive preeruption coverage of the transient location and infer the presence of a symbiotic progenitor system with an O-rich asymptotic-giant-branch donor star, as well as evidence for an earlier UV-bright outburst in 2014. We suggest that AT 2019qyl is analogous to the subset of Galactic recurrent novae with red-giant companions such as RS Oph and other embedded nova systems like V407 Cyg. Our observations provide new evidence that internal shocks between multiple, distinct outflow components likely contribute to the generation of the shock-powered emission from such systems.
  •  
6.
  • Ward, Sam M., et al. (författare)
  • Relative Intrinsic Scatter in Hierarchical Type Ia Supernova Sibling Analyses : Application to SNe 2021hpr, 1997bq, and 2008fv in NGC 3147
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 956:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Young Supernova Experiment grizy photometry of SN 2021hpr, the third Type Ia supernova sibling to explode in the Cepheid calibrator galaxy, NGC 3147. Siblings are useful for improving SN-host distance estimates and investigating their contributions toward the SN Ia intrinsic scatter (post-standardization residual scatter in distance estimates). We thus develop a principled Bayesian framework for analyzing SN Ia siblings. At its core is the cosmology-independent relative intrinsic scatter parameter, σRel: the dispersion of siblings distance estimates relative to one another within a galaxy. It quantifies the contribution toward the total intrinsic scatter, σ0, from within-galaxy variations about the siblings' common properties. It also affects the combined distance uncertainty. We present analytic formulae for computing a σRel posterior from individual siblings distances (estimated using any SN model). Applying a newly trained BAYESN model, we fit the light curves of each sibling in NGC 3147 individually, to yield consistent distance estimates. However, the wide σRel posterior means σRel ≈ σ0 is not ruled out. We thus combine the distances by marginalizing over σRel with an informative prior: σRel ∼ U(0, σ0). Simultaneously fitting the trio's light curves improves constraints on distance and each sibling's individual dust parameters, compared to individual fits. Higher correlation also tightens dust parameter constraints. Therefore, σRel marginalization yields robust estimates of siblings distances for cosmology, as well as dust parameters for sibling–host correlation studies. Incorporating NGC 3147's Cepheid distance yields H0 = 78.4 ± 6.5 km s−1 Mpc−1. Our work motivates analyses of homogeneous siblings samples, to constrain σRel and its SN-model dependence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy