SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coxall Helen K.) srt2:(2011-2014)"

Sökning: WFRF:(Coxall Helen K.) > (2011-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aze, Tracy, et al. (författare)
  • Identifying anagenesis cladogenesis in the fossil record
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:32, s. E2946-E2946
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Birch, Heather, et al. (författare)
  • Planktonic foraminifera stable isotopes and water column structure : Disentangling ecological signals
  • 2013
  • Ingår i: Marine Micropaleontology. - : Elsevier BV. - 0377-8398 .- 1872-6186. ; 101, s. 127-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Differential carbon and oxygen stable isotope (delta C-13 and delta O-18) fractionation between planktonic foraminifera test calcite and sea water related to ecology and life stage confound the potential for reconstructing palaeo-water column temperature and carbon gradients. Multi-species analysis and strict selection of test sizes are useful methods for identifying these fractionation processes, also known as 'vital effects', in fossil taxa. However, there are a limited number of species with adequate size-controlled data sets, needed for ground truthing the approach in the modern. Here we report delta C-13 and delta O-18 measurements made on twelve species of modern planktonic foraminifera across a range of fourteen tightly constrained size windows from a tropical Indian Ocean core top sample. This data set includes more test size windows per species, especially from the smallest (identifiable) test size-classes, and a wider range of species than previously attempted. We use the size controlled delta O-18 calcite trajectories to infer depth habitats and calculate species-specific calcification temperatures. The temperatures are then used to constrain species-specific calcification depths along the modern vertical temperature profile in the western tropical Indian Ocean. By overlaying the per species delta C-13 calcite trajectories on local water column delta C-13(DIC) profiles, we estimate if and when (i.e. at which test sizes) the planktonic foraminifera species investigated approach ambient delta C-13(DIC) values. The profiling shows significant size-controlled delta C-13 deviation from seawater values in all species at some life/growth stage, which we attribute to (i) metabolic fractionation in tests <150-300 mu m (juveniles of all species and small adults), and; (ii) photosymbiont fractionation, affecting large tests (>similar to 300 mu m) of mixed layer photosymbiotic taxa. For most species there is a size-window where these effects appear to be at a minimum, and/or in balance. Exceptions are Globigerinita glutinata, a small (<200 mu m) surface living species, Globigerina bulloides, which is highly opportunistic, and deep living Globorotalia tumida and Globorotaloides hexagonus, the latter two species being affected by various unexplained delta C-13 vital effects. Use of our refined guidelines for test-size selection should improve the potential for making realistic reconstructions of water column delta C-13(DIC) in a modern tropical stratified setting and potentially in the distant geological past when there are no living analogues present.
  •  
3.
  • Coxall, Helen K., et al. (författare)
  • Early Oligocene glaciation and productivity in the eastern equatorial Pacific : Insights into global carbon cycling
  • 2011
  • Ingår i: Paleoceanography. - 0883-8305 .- 1944-9186. ; 26, s. PA2221-
  • Tidskriftsartikel (refereegranskat)abstract
    • The onset of sustained Antarctic glaciation across the Eocene-Oligocene transition (EOT) marks a pivotal change in Earth's climate, but our understanding of this event, particularly the role of the carbon cycle, is limited. To help address this gap we present the following paleoceanographic proxy records from Ocean Drilling Program Site 1218 in the eastern equatorial Pacific (EEP): (1) stable isotope (delta(18)O and delta(13)C) records generated in epifaunal benthic foraminifera (Cibicidoides spp.) to improve (double the resolution) the previously published records; (2) delta(18)O and delta(13)C records measured on Oridorsalis umbonatus, a shallow infaunal species; and (3) a record of benthic foraminifera accumulation rate (BFAR). Our new isotope data sets confirm the existence at Site 1218 of a two-step delta(18)O increase. They also lend support to the hypothesized existence of a late Eocene transient delta(18)O increase and early Oligocene Oi-1a and Oi-1b glacial maxima. Our record of BFAR indicates a transient (similar to 500 kyr) twofold to threefold peak relative to baseline Oligocene values associated with the onset of Antarctic glaciation that we attribute to enhanced biological export production in the EEP. This takes the same general form as the history of opal accumulation in the Southern Ocean, suggesting strong high-to-low-latitude oceanic coupling. These findings appear to lend support to the idea that the EOT delta(13)C excursion is traceable to increased organic carbon (C(org)) burial. Paradoxically, early Oligocene sediments in the EEP are extremely C(org)-poor, and proxy records of atmospheric pCO(2) indicate a transient increase associated with the EOT.
  •  
4.
  • Moore, T. C., Jr., et al. (författare)
  • Equatorial Pacific productivity changes near the Eocene-Oligocene boundary
  • 2014
  • Ingår i: Paleoceanography. - 0883-8305 .- 1944-9186. ; 29:9, s. 825-844
  • Tidskriftsartikel (refereegranskat)abstract
    • There is general agreement that productivity in high latitudes increased in the late Eocene and remained high in the early Oligocene. Evidence for both increased and decreased productivity across the Eocene-Oligocene transition (EOT) in the tropics has been presented, usually based on only one paleoproductivity proxy and often in sites with incomplete recovery of the EOT itself. A complete record of the Eocene-Oligocene transition was obtained at three drill sites in the eastern equatorial Pacific Ocean (ODP Site 1218 and IODP Sites U1333 and U1334). Four paleoproductivity proxies that have been examined at these sites, together with carbon and oxygen isotope measurements on early Oligocene planktonic foraminifera, give evidence of ecologic and oceanographic change across this climatically important boundary. Export productivity dropped sharply in the basal Oligocene (similar to 33.7Ma) and only recovered several hundred thousand years later; however, overall paleoproductivity in the early Oligocene never reached the average levels found in the late Eocene and in more modern times. Changes in the isotopic gradients between deep- and shallow-living planktonic foraminifera suggest a gradual shoaling of the thermocline through the early Oligocene that, on average, affected accumulation rates of barite, benthic foraminifera, and opal, as well as diatom abundance near 33.5Ma. An interval with abundant large diatoms beginning at 33.3Ma suggests an intermediate thermocline depth, which was followed by further shoaling, a dominance of smaller diatoms, and an increase in average primary productivity as estimated from accumulation rates of benthic foraminifera.
  •  
5.
  • Pearson, Paul N., et al. (författare)
  • Origin of the Eocene planktonic foraminifer Hantkenina by gradual evolution :
  • 2014
  • Ingår i: Palaeontology. - : Wiley. - 0031-0239 .- 1475-4983. ; 57:2, s. 243-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Hantkenina is a distinctive planktonic foraminiferal genus characterized by the presence of tubulospines (robust hollow projections) on each adult chamber, from Middle and Upper Eocene marine sediments worldwide. Here we illustrate its evolutionary origin using c. 150 specimens from 30 stratigraphic intervals in two sediment cores from Tanzania. The specimens, which span an estimated time interval of 300 ka, show four intermediate steps in the evolution of the tubulospines that amount to a complete intergradation from Clavigerinella caucasica, which does not possess them, to Hantkenina mexicana, which does. Stable isotope analyses indicate that the transitional forms evolved in a deep planktonic habitat not occupied at that time by other species of planktonic foraminifera. We discuss the morphogenetic constraints involved in the evolutionary transition and propose an ecological/adaptive model for the selective pressures that resulted in the evolution of tubulospines. We compare our record with similar, recently described assemblages from Austria and Italy, and we update the biostratigraphy and systematic taxonomy of the key morphospecies involved in the transition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy