SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Curtius J.) srt2:(2010-2014)"

Sökning: WFRF:(Curtius J.) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keskinen, H., et al. (författare)
  • Evolution of Nanoparticle Composition in CLOUD in Presence of Sulphuric Acid, Ammonia and Organics
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 291-294
  • Konferensbidrag (refereegranskat)abstract
    • In this study, we investigate the composition of nucleated nanoparticles formed from sulphuric acid, ammonia, amines, and oxidised organics in the CLOUD chamber experiments at CERN. The investigation is carried out via analysis of the particle hygroscopicity (size range of 15-63 nm), ethanol affinity (15-50nm), oxidation state (<50 nm), and ion composition (few nanometers). The organic volume fraction of particles increased with an increase in particle diameter in presence of the sulphuric acid, ammonia and organics. Vice versa, the sulphuric acid volume fraction decreased when the particle diameter increased. The results provide information on the size-dependent composition of nucleated aerosol particles.
  •  
2.
  • Dusek, Ulrike, et al. (författare)
  • Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events
  • 2010
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 37
  • Tidskriftsartikel (refereegranskat)abstract
    • In a forested near-urban location in central Germany, the CCN efficiency of particles smaller than 100 nm decreases significantly during periods of new particle formation. This results in an increase of average activation diameters, ranging from 5 to 8% at supersaturations of 0.33% and 0.74%, respectively. At the same time, the organic mass fraction in the sub-100-nm size range increases from approximately 2/3 to 3/4. This provides evidence that secondary organic aerosol (SOA) components are involved in the growth of new particles to larger sizes, and that the reduced CCN efficiency of small particles is caused by the low hygroscopicity of the condensing material. The observed dependence of particle hygroscopicity (k) on chemical composition can be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by aerosol mass spectrometry: k = korg forg + kinorg finorg. The obtained value of korg ~ 0.1 is characteristic for SOA, and kinorg ~ 0.7 is consistent with the observed mix of ammonium, sulfate and nitrate ions.
  •  
3.
  • Almeida, Joao, et al. (författare)
  • Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 359-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy