SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(D'Andrea V.) srt2:(2015-2019)"

Sökning: WFRF:(D'Andrea V.) > (2015-2019)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Balercia, G., et al. (författare)
  • Thyroid function in Klinefelter syndrome: a multicentre study from KING group
  • 2019
  • Ingår i: Journal of Endocrinological Investigation. - : Springer Science and Business Media LLC. - 0391-4097 .- 1720-8386. ; 42:10, s. 1199-1204
  • Tidskriftsartikel (refereegranskat)abstract
    • - Purpose: The prevalence and the etiopathogenesis of thyroid dysfunctions in Klinefelter syndrome (KS) are still unclear. The primary aim of this study was to evaluate the pathogenetic role of hypogonadism in the thyroid disorders described in KS, with the scope to distinguish between patients with KS and hypogonadism due to other causes (Kallmann syndrome, idiopathic hypogonadotropic hypogonadism, iatrogenic hypogonadism and acquired hypogonadotropic hypogonadism after surgical removal of pituitary adenomas) called non-KS. Therefore, we evaluated thyroid function in KS and in non-KS hypogonadal patients. Methods: This is a case–control multicentre study from KING group: Endocrinology clinics in university-affiliated medical centres. One hundred and seventy four KS, and sixty-two non-KS hypogonadal men were enrolled. The primary outcome was the prevalence of thyroid diseases in KS and in non-KS. Changes in hormonal parameters were evaluated. Exclusion criterion was secondary hypothyroidism. Analyses were performed using Student’s t test. Mann–Whitney test and Chi-square test. Results: FT4 was significantly lower in KS vs non-KS. KS and non-KS presented similar TSH and testosterone levels. Hashimoto’s thyroiditis (HT) was diagnosed in 7% of KS. Five KS developed hypothyroidism. The ratio FT3/FT4 was similar in both groups. TSH index was 1.9 in KS and 2.3 in non-KS. Adjustment for differences in age, sample size and concomitant disease in multivariate models did not alter the results. Conclusions: We demonstrated in KS no etiopathogenic link to hypogonadism or change in the set point of thyrotrophic control in the altered FT4 production. The prevalence of HT in KS was similar to normal male population, showing absence of increased risk of HT associated with the XXY karyotype. © 2019, Italian Society of Endocrinology (SIE).
  •  
5.
  • Scolnic, D., et al. (författare)
  • How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 852:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of 103Gpc(-3) yr(-1), consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z = 0.8 for WFIRST, z = 0.25 for LSST, and z = 0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
  •  
6.
  • Scott, C. E., et al. (författare)
  • Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324 .- 1680-7316. ; 15:22, s. 12989-13001
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxidation of biogenic volatile organic compounds (BVOCs) gives a range of products, from semi-volatile to extremely low-volatility compounds. To treat the interaction of these secondary organic vapours with the particle phase, global aerosol microphysics models generally use either a thermodynamic partitioning approach (assuming instant equilibrium between semi-volatile oxidation products and the particle phase) or a kinetic approach (accounting for the size dependence of condensation). We show that model treatment of the partitioning of biogenic organic vapours into the particle phase, and consequent distribution of material across the size distribution, controls the magnitude of the first aerosol indirect effect (AIE) due to biogenic secondary organic aerosol (SOA). With a kinetic partitioning approach, SOA is distributed according to the existing condensation sink, enhancing the growth of the smallest particles, i.e. those in the nucleation mode. This process tends to increase cloud droplet number concentrations in the presence of biogenic SOA. By contrast, an approach that distributes SOA according to pre-existing organic mass restricts the growth of the smallest particles, limiting the number that are able to form cloud droplets. With an organically mediated new particle formation mechanism, applying a mass-based rather than a kinetic approach to partitioning reduces our calculated global mean AIE due to biogenic SOA by 24 %. Our results suggest that the mechanisms driving organic partitioning need to be fully understood in order to accurately describe the climatic effects of SOA.
  •  
7.
  • Albert, A., et al. (författare)
  • SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each similar to 2 sigma local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1 sigma). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of similar to 2 for large DM masses (m(DM, b<(b)over bar>) greater than or similar to 1 TeV and m(DM, tau+tau-) greater than or similar to 70 GeV) and weakening by a factor of similar to 1.5 at lower masses relative to previously observed limits.
  •  
8.
  •  
9.
  • Croft, Betty, et al. (författare)
  • Processes controlling the annual cycle of Arctic aerosol number and size distributions
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:6, s. 3665-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate interactions and balance in size-resolved aerosol simulations of the Arctic to reduce uncertainties in estimates of aerosol radiative effects on the Arctic climate.
  •  
10.
  • D’Andrea, S. D. D., et al. (författare)
  • Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15, s. 2247-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy