SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dabrowski W) srt2:(2020-2022)"

Sökning: WFRF:(Dabrowski W) > (2020-2022)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Poley, L., et al. (författare)
  • The ABC130 barrel module prototyping programme for the ATLAS strip tracker
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
  •  
2.
  • Butler-Laporte, G, et al. (författare)
  • Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative
  • 2022
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 18:11, s. e1010367-
  • Tidskriftsartikel (refereegranskat)abstract
    • Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.
  •  
3.
  • Charette, M. A., et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 125:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and similar to 25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 +/- 0.4 Sv (10(6) m(3)s(-1)). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Plain Language Summary A major feature of the Arctic Ocean circulation is the Transpolar Drift (TPD), a surface current that carries ice and continental shelf-derived materials from Siberia across the North Pole to the North Atlantic Ocean. In 2015, an international team of oceanographers conducted a survey of trace elements in the Arctic Ocean, traversing the TPD. Near the North Pole, they observed much higher concentrations of trace elements in surface waters than in regions on either side of the current. These trace elements originated from land, and their journey across the Arctic Ocean is made possible by chemical reactions with dissolved organic matter that originates mainly in Arctic rivers. This study reveals the importance of rivers and shelf processes combined with strong ocean currents in supplying trace elements to the central Arctic Ocean and onward to the Atlantic. These trace element inputs are expected to increase as a result of permafrost thawing and increased river runoff in the Arctic, which is warming at a rate much faster than anywhere else on Earth. Since many of the trace elements are essential building blocks for ocean life, these processes could lead to significant changes in the marine ecosystems and fisheries of the Arctic Ocean.
  •  
4.
  • Charette, M, et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 125, s. 1-34
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the openocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv(106m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologicc ycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
  •  
5.
  • Jacobs, Rita, et al. (författare)
  • Fluid Management, Intra-Abdominal Hypertension and the Abdominal Compartment Syndrome : A Narrative Review
  • 2022
  • Ingår i: Life. - : MDPI AG. - 0024-3019 .- 2075-1729. ; 12:9
  • Forskningsöversikt (refereegranskat)abstract
    • Background: General pathophysiological mechanisms regarding associations between fluid administration and intra-abdominal hypertension (IAH) are evident, but specific effects of type, amount, and timing of fluids are less clear. Objectives: This review aims to summarize current knowledge on associations between fluid administration and intra-abdominal pressure (IAP) and fluid management in patients at risk of intra-abdominal hypertension and abdominal compartment syndrome (ACS). Methods: We performed a structured literature search from 1950 until May 2021 to identify evidence of associations between fluid management and intra-abdominal pressure not limited to any specific study or patient population. Findings were summarized based on the following information: general concepts of fluid management, physiology of fluid movement in patients with intra-abdominal hypertension, and data on associations between fluid administration and IAH. Results: We identified three randomized controlled trials (RCTs), 38 prospective observational studies, 29 retrospective studies, 18 case reports in adults, two observational studies and 10 case reports in children, and three animal studies that addressed associations between fluid administration and IAH. Associations between fluid resuscitation and IAH were confirmed in most studies. Fluid resuscitation contributes to the development of IAH. However, patients with IAH receive more fluids to manage the effect of IAH on other organ systems, thereby causing a vicious cycle. Timing and approach to de-resuscitation are of utmost importance, but clear indicators to guide this decision-making process are lacking. In selected cases, only surgical decompression of the abdomen can stop deterioration and prevent further morbidity and mortality. Conclusions: Current evidence confirms an association between fluid resuscitation and secondary IAH, but optimal fluid management strategies for patients with IAH remain controversial.
  •  
6.
  •  
7.
  • Dabrowski, W, et al. (författare)
  • Decompressive Craniectomy Improves QTc Interval in Traumatic Brain Injury Patients
  • 2020
  • Ingår i: International journal of environmental research and public health. - : MDPI AG. - 1660-4601. ; 17:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Traumatic brain injury (TBI) is commonly associated with cardiac dysfunction, which may be reflected by abnormal electrocardiograms (ECG) and/or contractility. TBI-related cardiac disorders depend on the type of cerebral injury, the region of brain damage and the severity of the intracranial hypertension. Decompressive craniectomy (DC) is commonly used to reduce intra-cranial hypertension (ICH). Although DC decreases ICH rapidly, its effect on ECG has not been systematically studied. The aim of this study was to analyze the changes in ECG in patients undergoing DC. Methods: Adult patients without previously known cardiac diseases treated for isolated TBI with DC were studied. ECG variables, such as: spatial QRS-T angle (spQRS-T), corrected QT interval (QTc), QRS and T axes (QRSax and Tax, respectively), STJ segment and the index of cardio-electrophysiological balance (iCEB) were analyzed before DC and at 12–24 h after DC. Changes in ECG were analyzed according to the occurrence of cardiac arrhythmias and 28-day mortality. Results: 48 patients (17 female and 31 male) aged 18–64 were studied. Intra-cranial pressure correlated with QTc before DC (p < 0.01, r = 0.49). DC reduced spQRS-T (p < 0.001) and QTc interval (p < 0.01), increased Tax (p < 0.01) and changed STJ in a majority of leads but did not affect QRSax and iCEB. The iCEB was relatively increased before DC in patients who eventually experienced cardiac arrhythmias after DC (p < 0.05). Higher post-DC iCEB was also noted in non-survivors (p < 0.05), although iCEB values were notably heart rate-dependent. Conclusions: ICP positively correlates with QTc interval in patients with isolated TBI, and DC for relief of ICH reduces QTc and spQRS-T. However, DC might also increase risk for life-threatening cardiac arrhythmias, especially in ICH patients with notably prolonged QTc before and increased iCEB after DC.
  •  
8.
  • Dabrowski, W, et al. (författare)
  • Plasma Hyperosmolality Prolongs QTc Interval and Increases Risk for Atrial Fibrillation in Traumatic Brain Injury Patients
  • 2020
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Hyperosmotic therapy with mannitol is frequently used for treatment cerebral edema, and 320 mOsm/kg H2O has been recommended as a high limit for therapeutic plasma osmolality. However, plasma hyperosmolality may impair cardiac function, increasing the risk of cardiac events. The aim of this study was to analyze the relation between changes in plasma osmolality and electrocardiographic variables and cardiac arrhythmia in patients treated for isolated traumatic brain injury (iTBI). Methods: Adult iTBI patients requiring mannitol infusion following cerebral edema, and with a Glasgow Coma Score below 8, were included. Plasma osmolality was measured with Osmometr 800 CLG. Spatial QRS-T angle (spQRS-T), corrected QT interval (QTc) and STJ segment were calculated from digital resting 12-lead ECGs and analyzed in relation to four levels of plasma osmolality: (A) <280 mOsm/kg H2O; (B) 280–295 mOsm/kg H2O; (C) 295–310 mOsm/kg H2O; and (D) >310 mOsm/kg H2O. All parameters were measured during five consecutive days of treatment. Results: 94 patients aged 18-64 were studied. Increased plasma osmolality correlated with prolonged QTc (p < 0.001), intensified disorders in STJ and increased the risk for cardiac arrhythmia. Moreover, plasma osmolality >313 mOms/kg H2O significantly increased the risk of QTc prolongation >500 ms. Conclusion: In patients treated for iTBI, excessively increased plasma osmolality contributes to electrocardiographic disorders including prolonged QTc, while also correlating with increased risk for cardiac arrhythmias.
  •  
9.
  •  
10.
  • Dabrowski, W, et al. (författare)
  • Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury
  • 2021
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution. Methods: Adult patients with TBI were studied. Surface 12-lead ECGs were recorded using a Cardiax device during ESz events and 15 min after their effective suppression using barbiturate infusion. The ESz events were diagnosed using Masimo Root or bispectral index (BIS) devices. Results: Of the 348 patients considered for possible inclusion, ESz were noted in 72, with ECG being recorded in 21. Prolonged QTc was noted during ESz but significantly ameliorated after ESz suppression (540.19 ± 60.68 ms vs. 478.67 ± 38.52 ms, p < 0.001). The spatial QRS-T angle was comparable during ESz and after treatment. Regional cerebral oximetry increased following ESz suppression (from 58.4% ± 6.2 to 60.5% ± 4.2 (p < 0.01) and from 58.2% ± 7.2 to 60.8% ± 4.8 (p < 0.05) in the left and right hemispheres, respectively). Conclusion: QTc interval prolongation occurs during ESz events in TBI patients but both it and regional cerebral oximetry are improved after suppression of seizures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy