SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Damdimopoulou Pauliina) srt2:(2010-2014)"

Sökning: WFRF:(Damdimopoulou Pauliina) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Imran, et al. (författare)
  • Cadmium-induced effects on cellular signaling pathways in the liver of transgenic estrogen reporter mice.
  • 2012
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 127:1, s. 66-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen-like effects of cadmium (Cd) have been reported in several animal studies, and recent epidemiological findings suggest increased risk of hormone-dependent cancers after Cd exposure. The mechanisms underlying these effects are still under investigation. Our aim was to study the effects of Cd on cellular signaling pathways in vivo with special focus on estrogen signaling and to perform benchmark dose analysis on the effects. Transgenic adult ERE-luciferase male mice were exposed subcutaneously to 0.5-500 μg CdCl(2) per kg body weight (bw) or 17α-ethinylestradiol (EE2) for 3 days. These doses had no effects on organ and bw or testicular histology, indicating subtoxic exposure levels. The transgene luciferase, reporting genomic estrogen response, was significantly increased by EE2 but not by Cd. However, Cd significantly affected kinase phosphorylation and endogenous gene expression. Interestingly, gene expression changes displayed a traditional dose-response relationship, with benchmark dose levels for the expression of Mt1, Mt2, p53, c-fos, and Mdm2 being 92.9, 19.9, 7.6, 259, and 25.9 μg/kg bw, respectively, but changes in kinase phosphorylation were only detected at low exposure levels. Phosphorylation of Erk1/2 was significantly increased even in the lowest dose group, 0.5 μg/kg bw, rendering pErk1/2 a more sensitive sensor of exposure than changes in gene expression. Collectively, our data suggest that the effects triggered by Cd in vivo are markedly concentration dependent. Furthermore, we conclude that the estrogen-like effects of Cd are likely to result from a mechanism different from steroidal estrogens.
  •  
2.
  • Ali, Imran, et al. (författare)
  • Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway.
  • 2010
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 118:10, s. 1389-94
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cadmium (Cd), a ubiquitous food contaminant, has been proposed to be an endocrine disruptor by inducing estrogenic responses in vivo. Several in vitro studies suggested that these effects are mediated via estrogen receptors (ERs). OBJECTIVE: We performed this study to clarify whether Cd-induced effects in vivo are mediated via classical ER signaling through estrogen responsive element (ERE)-regulated genes or if other signaling pathways are involved. METHODS: We investigated the estrogenic effects of cadmium chloride (CdCl2) exposure in vivo by applying the Organisation for Economic Co-operation and Development (OECD) rodent uterotrophic bioassay to transgenic ERE-luciferase reporter mice. Immature female mice were injected subcutaneously with CdCl2 (5, 50, or 500 µg/kg body weight) or with 17α-ethinylestradiol (EE2) on 3 consecutive days. We examined uterine weight and histology, vaginal opening, body and organ weights, Cd tissue retention, activation of mitogen-activated protein kinase (MAPK) pathways, and ERE-dependent luciferase expression. RESULTS: CdCl2 increased the height of the uterine luminal epithelium in a dose-dependent manner without increasing the uterine wet weight, altering the timing of vaginal opening, or affecting the luciferase activity in reproductive or nonreproductive organs. However, we observed changes in the phosphorylation of mouse double minute 2 oncoprotein (Mdm2) and extracellular signal-regulated kinase (Erk1/2) in the liver after CdCl2 exposure. As we expected, EE2 advanced vaginal opening and increased uterine epithelial height, uterine wet weight, and luciferase activity in various tissues. CONCLUSION: Our data suggest that Cd exposure induces a limited spectrum of estrogenic responses in vivo and that, in certain targets, effects of Cd might not be mediated via classical ER signaling through ERE-regulated genes.
  •  
3.
  • Damdimopoulou, Pauliina, et al. (författare)
  • A single dose of enterolactone activates estrogen signaling and regulates expression of circadian clock genes in mice.
  • 2011
  • Ingår i: The Journal of nutrition. - : Elsevier BV. - 1541-6100 .- 0022-3166. ; 141:9, s. 1583-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterolactone (EL) is an enterolignan produced by gut microbiota from dietary plant lignans. Epidemiological and experimental studies suggest that EL and plant lignans may reduce the risk of breast and prostate cancer as well as cardiovascular disease. These effects are thought to at least in part involve modulation of estrogen receptor activity. Surprisingly little is known about the in vivo estrogenicity of EL. In the present study, we investigated the target tissues of EL, the genes affected by EL treatment, and the response kinetics. Following a single dose of EL, luciferase was significantly induced in reproductive and nonreproductive tissues of male and female 3xERE-luciferase mice, indicating estrogen-like activity. Microarray analysis revealed that EL regulated the expression of only 1% of 17β-estradiol target genes in the uterus. The majority of these genes were traditional estrogen target genes, but also members of the circadian signaling pathway were affected. Kinetic analyses showed that EL undergoes rapid phase II metabolism and is efficiently excreted. In vivo imaging demonstrated that the estrogen response followed similar, fast kinetics. We conclude that EL activates estrogen signaling in both male and female mice and that the transient responses may be due to the fast metabolism of the compound. Lastly, EL may represent a link among diet, gut microbiota, and circadian signaling.
  •  
4.
  • Strauss, Leena, et al. (författare)
  • Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1-driven luciferase reporter mouse and human tissue specimens.
  • 2013
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 27:4, s. 1342-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The human CYP19A1 gene is expressed in various tissues by the use of tissue-specific promoters, whereas the rodent cyp19a1 gene is expressed mainly in the gonads and brain. We generated a transgenic mouse model containing a >100-kb 5' region of human CYP19A1 gene connected to a luciferase reporter gene. The luciferase activity in mouse tissues mimicked the CYP19A1 gene expression pattern in humans. Interestingly, the reporter gene activity was 16 and 160 times higher in the urinary bladder and seminal vesicles, respectively, as compared with the activity in the testis. Accordingly, CYP19A1 gene and P450arom protein expression was detected in those human tissues. Moreover, the data revealed that the expression of CYP19A1 gene is driven by promoters PII, I.4, and I.3 in the seminal vesicles, and by promoters PII and I.4 in the urinary bladder. Furthermore, the reporter gene expression in the seminal vesicles was androgen dependent: Castration decreased the expression ∼20 times, and testosterone treatment restored it to the level of an intact mouse. This reporter mouse model facilitates studies of tissue-specific regulation of the human CYP19A1 gene, and our data provide evidence for seminal vesicles as important sites for estrogen production in males.-Strauss, L., Rantakari, P., Sjögren, K., Salminen, A., Lauren, E., Kallio, J., Damdimopoulou, P., Boström, M., Boström, P. J., Pakarinen, P., Zhang, F. P., Kujala, P., Ohlsson, C., Mäkelä, S., Poutanen, M. Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1-driven luciferase reporter mouse and human tissue specimens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy