SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Danielson Patrik) srt2:(2010-2014)"

Sökning: WFRF:(Danielson Patrik) > (2010-2014)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Gustav, 1983- (författare)
  • Influences of paratendinous innervation and non-neuronal substance P in tendinopathy : studies on human tendon tissue and an experimental model of Achilles tendinopathy
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Pain of the musculoskeletal system is one of the most common reasons for people seeking medical attention, and is also one of the major factors that prevent patients from working. Chronic tendon pain, tendinopathy, affects millions of workers world-wide, and the Achilles tendon is an important structure often afflicted by this condition. The pathogenesis of tendinopathy is poorly understood, but it is thought to be of multifactoral aetiology. It is known that tendon pain is often accompanied not only by impaired function but also by structural tissue changes, like vascular proliferation, irregular collagen organisation, and hypercellularity, whereby the condition is called tendinosis. In light of the poor knowledge of tendinosis pathophysiology and recent findings of a non-neuronal signalling system in tendon tissue, the contributory role of neuropeptides such as substance P (SP) has gained increased interest. SP, known for afferent pain signalling in the nervous system, also has multiple efferent functions and has been described to be expressed by non-neuronal cells. As pain is the most prominent symptom of tendinopathy, the focus of the studies in this thesis was the innervation patterns of the tissue ventral to the Achilles tendon (i.e. the tissue targeted in many contemporary treatment methods) as well as the distribution of SP and its preferred receptor, the neurokinin-1 receptor (NK-1R), in the tendon tissue itself. It was hereby hypothesised that the source of SP affecting the Achilles tendon might be the main cells of the tendon tissue (the tenocytes) as well as paratendinous nerves, and that SP might be involved in tendinosis- development. The studies were conducted, via morphological staining methods including immunohistochemistry and in situ hybridisation, on tendon biopsies from patients suffering from Achilles tendinosis and on those from healthy volunteers. The hypothesis of the thesis was furthermore tested using an experimental animal model (rabbit) of Achilles tendinopathy, which was first validated. The model was based on a previously established overuse protocol of repetitive exercise. In the human biopsies of the tissue ventral to the Achilles tendon, there was a marked occurrence of sympathetic innervation, but also sensory, SP-containing, nerve fibres. NK-1R was expressed on blood vessels and nerve fascicles of the paratendinous tissue, but also on the tenocytes of the tendon tissue proper itself, and notably more so in patients suffering from tendinosis. Furthermore, the human tenocytes displayed not only NK-1R mRNA but also mRNA for SP. The animal model was shown to produce objectively verified tendinosis-like changes, such as hypercellularity and increased vascularity, in the rabbit Achilles tendons, after a minimum of three weeks of the exercise protocol. The contralateral leg of the animals in the model was found to be an unreliable control, as bilateral changes occured. The model furthermore demonstrated that exogenously administered SP triggers an inflammatory response in the paratendinous tissue and accelerates the intratendinous tendinosis-like changes such that they now occur after only one week of the protocol. Injections of saline as a control showed similar results as SP concerning hypercellularity, but did not lead to vascular changes or pronounced paratendinous inflammation. In summary, this thesis concludes that interactions between the peripheral sympathetic and sensory nervous systems may occur in Achilles tendinosis at the level of the ventral paratendinous tissue, a region thought to be of great importance in chronic tendon pain since many successful treatments are directed toward it. Furthermore, the distribution of NK-1R:s in the Achilles tendon described in these studies gives a basis for SP, whether produced by nerves mainly outside the tendon or by tenocytes within the tendon, to affect blood vessels, nerve structures, and/or tendon cells, especially in tendinosis patients. In light of this and of previously known SP-effects, such as stimulation of angiogenesis, pain signalling, and cell proliferation, the proposed involvement of SP in tendinosis development seems likely. Indeed, the animal model of Achilles tendon overuse confirms that SP does induce vascular proliferation and hypercellularity in tendon tissue, thus strengthening theories of SP playing a role in tendinosis pathology.
  •  
2.
  • Andersson, Gustav, et al. (författare)
  • Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model
  • 2011
  • Ingår i: British Journal of Sports Medicine. - Loughborough : British Assoc. of Sport and Medicine. - 0306-3674 .- 1473-0480. ; 45:13, s. 1017-1022
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Tenocytes produce substance P (SP) and its receptor (neurokinin-1 receptor (NK-1R) is expressed throughout the tendon tissue, expecially in patients with tendinopathy and tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering the known effects of SP, one might ask whether SP contributes to these canges.Objectives To test whether development of tendinosislike changes (hypercellularity and angiogenesis) is accelerated during a 1-week course of ecercise with local administration of SP in an establish Achilles tendinopathy model.Methods Rabbits were subjected to a protocol of Achilles tendon overuse for 1 week, in conjunction with SP injections in the paratenon. Exercised control animals received NaCl injections or no injections, and unexercised, uninjected controls were also used. Tenocyte number and vascular density, as well as paratendinous inflammation, were evaluated. Immunohistochemistry and in sity hybridisation to detect NK-1R were conducted.Results There was a significant increase in tenocyte number in the SP-injected and NaCl-injected groups compared with both unexercised and exercised, uninjected controls. Tendon blood vessels increased in number in the SP-injected group compared with unexercised controls, a finding not seen in NaCl-injected controls or in uninjected, exercised animals. Paratendinous inflammation was more pronounced in the SP-injected group than in the NaCl controls. NK-1R was detected in blood vessel walls, nerves, inflammatory cells and tenocytes.Conclusions SP accelerated the development of tendinosis-like changes in the rabbit. Achilles tendon, which supports theories of a potential role of SP in tendinosis development; a fact of clinical interest since SP effects can be effectively blocked. The angiogenic response to SP injections seems related to parateninitis.
  •  
3.
  • Andersson, Gustav, 1983-, et al. (författare)
  • Tenocyte hypercellularity and vascular proliferation in a rabbit model of tendinopathy : contralateral effects suggest the involvement of central neuronal mechanisms
  • 2011
  • Ingår i: British Journal of Sports Medicine. - : BMJ. - 0306-3674 .- 1473-0480. ; 45:5, s. 399-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To determine whether there are objective findings of tendinosis in a rabbit tendinopathy model on exercised and contralateral (non-exercised) Achilles tendons. Design Four groups of six New Zealand white rabbits per group were used. The animals of one (control) group were not subjected to exercise/stimulation. Interventions Animals were subjected to a protocol of electrical stimulation and passive flexion-extension of the right triceps surae muscle every second day for 1, 3 or 6 weeks. Main Outcome Measures Tenocyte number and vascular density were calculated. Morphological evaluations were also performed as well as in-situ hybridisation for vascular endothelial growth factor (VEGF) messenger RNA. Results There was a significant increase in the tenocyte number after 3 and 6 weeks of exercise, but not after 1 week, in comparison with the control group. This was seen in the Achilles tendons of both legs in experimental animals, including the unexercised limb. The pattern of vascularity showed an increase in the number of tendon blood vessels in rabbits that had exercised for 3 weeks or more, compared with those who had exercised for 1 week or not at all. VEGF-mRNA was detected in the investigated tissue, with the reactions being more clearly detected in the tendon tissue with tendinosis-like changes (6-week rabbits) than in the normal tendon tissue (control rabbits). Conclusions There were bilateral tendinosis-like changes in the Achilles tendons of rabbits in the current model after 3 weeks of training, suggesting that central neuronal mechanisms may be involved and that the contralateral side is not appropriate as a control.
  •  
4.
  • Backman, Ludvig, et al. (författare)
  • Endogenous substance P production in the Achilles tendon increases with loading in an in vivo model of tendinopathy : peptidergic elevation preceding tendinosis-like tissue changes
  • 2011
  • Ingår i: Journal of Musculoskeletal and Neuronal Interactions - JMNI. - : International Society of Musculoskeletal and Neuronal Interactions. - 1108-7161. ; 11:2, s. 133-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To quantify the intratendinous levels of substance P (SP) at different stages of overload in an established modelfor Achilles tendinopathy (rabbit). Also, to study the distribution of the SP-receptor, the NK-1R, and the source of SP, in thetendon. Methods: Animals were subjected to the overuse protocol for 1, 3 or 6 weeks. One additional group served as unexercisedcontrols. Immunoassay (EIA), immunohistochemistry (IHC), and in situ hybridisation (ISH) were performed.Results: EIA revealedincreased SP-levels in the Achilles tendon of the exercised limb in all the experimental groups as compared to in thecontrols (statistically significant; p=0.01). A similar trend in the unexercised Achilles tendon was observed but was not statisticallysignificant (p=0.14). IHC and in ISH illustrated reactions of both SP and NK-1R mainly in blood vessel walls, but the receptorwas also found on tenocytes.Conclusions: Achilles tendon SP-levels are elevated already after 1 week of loading. This showsthat increased SP-production precedes tendinosis, as tendinosis-like changes occur only after a minimum of 3 weeks of exercise,as shown in a recent study using this model. We propose that central neuronal mechanism may be involved as similar trends wereobserved in the contralateral Achilles tendon.
  •  
5.
  • Backman, Ludvig J, 1983-, et al. (författare)
  • Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes
  • 2013
  • Ingår i: Journal of Cellular and Molecular Medicine (Print). - : Wiley-Blackwell. - 1582-1838 .- 1582-4934. ; 17:6, s. 723-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated incases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt,which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fastreatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanismsSP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e.induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trendwas seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas inducescleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, inducedthrough the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this antiapoptoticeffect of SP is mediated through NK-1 R and Akt-specific pathways.
  •  
6.
  • Backman, Ludvig J, et al. (författare)
  • Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity : comparison between two model systems
  • 2013
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - : John Wiley & Sons. - 0905-7188 .- 1600-0838. ; 23:6, s. 687-696
  • Tidskriftsartikel (refereegranskat)abstract
    • The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α(2A) AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α(2A) AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α(2A) AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.
  •  
7.
  • Backman, Ludvig J, et al. (författare)
  • Low range of ankle dorsiflexion predisposes for patellar tendinopathy in junior elite basketball players : a 1-year prospective study
  • 2011
  • Ingår i: American Journal of Sports Medicine. - : SAGE Publications. - 0363-5465 .- 1552-3365. ; 39:12, s. 2626-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patellar tendinopathy (PT) is one of the most common reasons for sport-induced pain of the knee. Low ankle dorsiflexion range might predispose for PT because of load-bearing compensation in the patellar tendon. PURPOSE: The purpose of this 1-year prospective study was to analyze if a low ankle dorsiflexion range increases the risk of developing PT for basketball players. STUDY DESIGN: Cohort study (prognosis); Level of evidence, 2. METHODS: Ninety junior elite basketball players were examined for different characteristics and potential risk factors for PT, including ankle dorsiflexion range in the dominant and nondominant leg. Data were collected over a 1-year period and follow-up, including reexamination, was made at the end of the year. RESULTS: Seventy-five players met the inclusion criteria. At the follow-up, 12 players (16.0%) had developed unilateral PT. These players were found to have had a significantly lower mean ankle dorsiflexion range at baseline than the healthy players, with a mean difference of -4.7° (P = .038) for the dominant limb and -5.1° (P = .024) for the nondominant limb. Complementary statistical analysis showed that players with dorsiflexion range less than 36.5° had a risk of 18.5% to 29.4% of developing PT within a year, as compared with 1.8% to 2.1% for players with dorsiflexion range greater than 36.5°. Limbs with a history of 2 or more ankle sprains had a slightly less mean ankle dorsiflexion range compared to those with 0 or 1 sprain (mean difference, -1.5° to -2.5°), although this was only statistically significant for nondominant legs. CONCLUSION: This study clearly shows that low ankle dorsiflexion range is a risk factor for developing PT in basketball players. In the studied material, an ankle dorsiflexion range of 36.5° was found to be the most appropriate cutoff point for prognostic screening. This might be useful information in identifying at-risk individuals in basketball teams and enabling preventive actions. A history of ankle sprains might contribute to reduced ankle dorsiflexion range.
  •  
8.
  • Backman, Ludvig J., et al. (författare)
  • Substance P reduces TNF-α-induced apoptosis in human tenocytes through NK-1 receptor stimulation
  • 2014
  • Ingår i: British Journal of Sports Medicine. - : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 48:19, s. 1414-1420
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: It has been hypothesised that an upregulation of the neuropeptide substance P (SP) and its preferred receptor, the neurokinin-1 receptor (NK-1 R), is a causative factor in inducing tenocyte hypercellularity, a characteristic of tendinosis, through both proliferative and antiapoptotic stimuli. We have demonstrated earlier that SP stimulates proliferation of human tenocytes in culture.AIM: The aim of this study was to investigate whether SP can mediate an antiapoptotic effect in tumour necrosis factor-α (TNF-α)-induced apoptosis of human tenocytes in vitro.RESULTS: A majority (approximately 75%) of tenocytes in culture were immunopositive for TNF Receptor-1 and TNF Receptor-2. Exposure of the cells to TNF-α significantly decreased cell viability, as shown with crystal violet staining. TNF-α furthermore significantly increased the amount of caspase-10 and caspase-3 mRNA, as well as both BID and cleaved-poly ADP ribosome polymerase (c-PARP) protein. Incubation of SP together with TNF-α resulted in a decreased amount of BID and c-PARP, and in a reduced lactate dehydrogenase release, as compared to incubation with TNF-α alone. The SP effect was blocked with a NK-1 R inhibitor.DISCUSSION: This study shows that SP, through stimulation of the NK-1 R, has the ability to reduce TNF-α-induced apoptosis of human tenocytes. Considering that SP has previously been shown to stimulate tenocyte proliferation, the study confirms SP as a potent regulator of cell-turnover in tendon tissue, capable of stimulating hypercellularity through different mechanisms. This gives further support for the theory that the upregulated amount of SP seen in tendinosis could contribute to hypercellularity.
  •  
9.
  • Backman, Ludvig, 1983- (författare)
  • Neuropeptide and catecholamine effects on tenocytes in tendinosis development : studies on two model systems with focus on proliferation and apoptosis
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Achilles tendinopathy is a common clinical syndrome of chronic Achilles tendon pain combined with thickening of the tendon and impaired tendon function. Tendinopathy is often, but not always, induced by mechanical overload, and is frequently accompanied by abnormalities at the tissue level, such as hypercellularity and angiogenesis, in which case the condition is called tendinosis. In tendinosis, there are no signs of intratendinous inflammation, but occasionally increased apoptosis is observed. Tendinosis is often hard to treat and its pathogenesis is still not clear. Recently, a new hypothesis has gained support, suggesting a biochemical model based on the presence of a non-neuronal production of classically neuronal signal substances by the primary tendon cells (tenocytes) in tendinosis. The possible functional importance of these signal substances in tendons is unknown and needs to be studied. In particular, the neuropeptide substance P (SP) and catecholamines are of interest in this regard, since these substances have been found to be up-regulated in tendinosis. As both SP and catecholamines are known to exert effects in other tissues resulting in changes similar to those characteristic of tendinosis, it is possible that they have a role in tendinosis development. It is furthermore unknown what elicits the increased intratendinous neuropeptide production in tendinosis, but given that tendon overload is a prominent riskfactor, it is possible that mechanical stimuli are involved.The hypothesis of this thesis work was that intratendinous production of SP is up-regulated in response to load of Achilles tendons/tenocytes, and thatstimulation of the preferred SP receptor, the neurokinin-1 receptor (NK-1 R), aswell as stimulation of the catecholamine α2 adrenoreceptors, contribute to the hypercellularity seen in tendinosis, via increased proliferation and/or decreased apoptosis, and that SP stimulates tendon angiogenesis. The purpose of the studies was to test this hypothesis. To achieve this, two model systems were used: One in vivo (rabbit Achilles tendon overload model of tendinosis) and one in vitro (human primary Achilles tendon cell culture model).Results: In the rabbit Achilles tendon tissue, SP and NK-1 R expression was extensive in the blood vessel walls, but also to some extent seen in the tenocytes. Quantification of endogenously produced SP in vivo confirmed intratendinous production of the peptide. The production of SP by human tendon cells in vitro was furthermore demonstrated. The catecholamine synthesizing enzyme tyrosine hydroxylase (TH), as well as the α2A adrenoreceptor (α2A AR), were detected in the tenocytes, both in vivo in the rabbit tissue and in vitro in the human tendon cells. As a response to mechanical loading in the in vivo model, the intratendinous levels of SP increased, and this elevation was found to precede distinct tendinosis changes. The in vitro model demonstrated the same response to load, i.e. an increased SP expression, but in this case also a decrease in the NK-1 R expression. In the in vivo model, exogenously administered SP, as well as clonidine (an α2 AR agonist), accelerated tenocyte hypercellularity, an effect that was not seen when administrating a specific α2A AR antagonist. Exogenous administration of SP also resulted in intratendinous angiogenesis and paratendinous inflammation. In the in vitro model, both SP and clonidine had proliferative effects on the human tenocytes, specifically mediated via NK-1R and α2A AR, respectively; both of which in turn involved activation/phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Exogenously administered SP, in Anti-Fas induced apoptosis of the tenocytes in vitro, confirmed SP to have an anti-apoptotic effect on these cells. This effect was specifically mediated via NK-1 R and the known anti-apoptotic Akt pathway.Conclusions: In summary, this thesis concludes that stimulation of NK-1 R and α2A AR on tenocytes, both in vitro and in vivo, mediates significant cell signalling effects leading to processes known to occur in tendinosis, including hypercellularity. The pathological role of the hypercellularity in tendinosis is still unclear, but it is likely to affect collagen metabolism/turnover and arrangement, and thereby indirectly tendon biomechanical function. Additional evidence is here provided showing that SP not only causes tenocyte proliferation, but also contributes to anti-apoptotic events. Furthermore, it was concluded that SP may be involved in the development of tendinosis, since its production is increased in response to load, preceding tendinosis, and since SP accelerates tendinosis changes, through some mechanistic pathways here delineated. These findings suggest that inhibition of SP, and possibly also catecholamines, could be beneficial in the reconstitution/normalization of tendon structure in tendinosis.
  •  
10.
  • Backman, Ludvig, et al. (författare)
  • Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation
  • 2011
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library of Science. - 1932-6203. ; 6:11, s. e27209-
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell (R) technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10(-7) M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (20)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Danielson, Patrik (16)
Forsgren, Sture (6)
Andersson, Gustav (5)
Scott, Alexander (5)
Alfredson, Håkan (4)
Backman, Ludvig J. (4)
visa fler...
Backman, Ludvig (4)
Fong, Gloria (4)
Lorentzon, Ronny (3)
Scott, Alex (3)
Scott, A (2)
Wijk, Helle, 1958 (2)
Andersson, Gustav, 1 ... (2)
Danielson, Patrik, 1 ... (2)
Bagge, Johan (2)
Zhou, Qingjun (2)
Dahlqvist Jönsson, P ... (2)
Spang, Christoph (1)
Abraham, T. (1)
Backman, Clas (1)
Hart, David A (1)
Skärsäter, Ingela, 1 ... (1)
Skärsäter, Ingela (1)
Danielson, Patrik, M ... (1)
Forsgren, Sture, MD, ... (1)
Alfredson, Håkan, MD ... (1)
Hart, David A., Dr. (1)
Gaida, James Edmund (1)
Stjernfeldt, Johanna ... (1)
Vicenzino, Bill (1)
Wennstig, Gabriel (1)
Backman, Ludvig J, 1 ... (1)
Eriksson, Daniella E ... (1)
Backman, Ludvig, 198 ... (1)
Danielson, Patrik, D ... (1)
Collins, Malcolm, Pr ... (1)
Gaida, JE (1)
Forsgren, Sture, Pro ... (1)
Movin, Tomas, Docent (1)
Danielson, Ella, 194 ... (1)
Bjur, Dennis, 1965- (1)
Danielson, Patrik, U ... (1)
Alfredson, Håkan, Pr ... (1)
Danielson, Ella (1)
Wang, Ye (1)
Chen, Peng (1)
Zwerver, Johannes (1)
Di, Guohu (1)
Qi, Xia (1)
McCormack, Bob (1)
visa färre...
Lärosäte
Umeå universitet (21)
Göteborgs universitet (2)
Högskolan i Halmstad (2)
Mittuniversitetet (2)
Chalmers tekniska högskola (2)
Lunds universitet (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy