SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Danielsson Fredrik 1972 ) srt2:(2020-2024)"

Sökning: WFRF:(Danielsson Fredrik 1972 ) > (2020-2024)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bennulf, Mattias, 1992-, et al. (författare)
  • A conceptual model for multi-agent communication applied on a plug & produce system
  • 2020
  • Ingår i: Procedia CIRP. - : Elsevier BV. - 2212-8271 .- 2212-8271. ; 93, s. 347-352
  • Tidskriftsartikel (refereegranskat)abstract
    • Today, multi-agent systems are still uncommon in the industry because they require more time to be implemented than traditional manufacturing systems. In this paper, a conceptual model and guidelines are defined for communication and negotiation between agents for Plug & Produce systems. Standards for agent communication exists today, such as the FIPA collection of specifications. However, FIPA is a broad and general standard for any kind of system and leaves a lot of room for interpretation. This paper presents a new conceptual model and guidelines on how to simplify the implementation phase by limiting the choices an engineer must make when implementing a multi-agent system for a manufacturing system. © 2020 The Authors.
  •  
2.
  • Bennulf, Mattias, 1992- (författare)
  • A Control Framework for Industrial Plug & Produce
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Kundanpassade produkter och korta produktionsserier blir alltmer populärt. Detta har lett till problem för dedikerade tillverkningssystem som är designade för massproduktion. Det krävs ofta långa produktionsserier för att det ska bli en rimlig investering att ställa om produktionen. Därför används människor för tillverkningsuppgifter som ofta ställs om. Denna avhandling fokuserar på konceptet Plug & Produce, som gör det enklare att flytta, lägga till och ta bort resurser från ett tillverkningssystem. Tanken är att resurser placeras i processmoduler som alla har samma fysiska gränssnitt för att kopplas in i tillverkningssystemet. Styrningen av tillverkningssystemet görs av ett multiagentsystem där varje detalj som ska produceras för produkter får en egen agent som representerar detaljen och agerar som styrningsmjukvara. Varje detaljs agent tar hand on sina egna tillverkningsmål genom att kommunicera med resursagenter i systemet som används för styrning av resurserna. I detta arbete, presenteras ett ramverk för Plug & Produce som består av ett konfigurerbart multiagentsystem, samt ett konfigurationsverktyg som kan användas för att definiera agenterna. Arbetet inkluderar metoder för att identifiera inkopplade resurser, kommunikation mellan agenter, schemaläggning som kan undvika konflikter mellan agenter, samt metoder för att automatiskt hitta vägar för transport genom tillverkningssystemet.
  •  
3.
  • Bennulf, Mattias, 1992-, et al. (författare)
  • A Method for Configuring Agents in Plug & Produce Systems
  • 2022
  • Ingår i: SPS2022. - : IOS Press. - 9781643682686 - 9781643682693 ; , s. 135-146
  • Konferensbidrag (refereegranskat)abstract
    • Multi-agent technology, used for implementing Plug & Produce systems have many proposed benefits for fast adaption of manufacturing systems. However, still today multi-agent technology is not ready for the industry, due to the lack of mature supporting tools and guidelines. The result is that today, multi-agent systems are more complicated and time-consuming to use than traditional approaches. This hides their true benefits. In this paper, a new method for configuring agents is presented that includes automated deployment to manufacturing systems and by its flexible design opens the possibility to connect many other supporting tools when needed. A configuration tool is also designed that works with the proposed method by connecting to an agent configuration database. The overall aim of the method is to simplify the steps taken for adapting a manufacturing system for new parts and resources.  
  •  
4.
  • Bennulf, Mattias, 1992- (författare)
  • A User-Friendly Approach for Applying Multi-Agent Technology in Plug & Produce Systems
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents methods for simplifying the use of multi-agent systems in Plug & Produce. The demand for customized products and low volume production is constantly increasing. The industry has for many years used dedicated manufacturing systems where it is difficult and expensive to adapt to new product designs. Instead, factories are forced to use human workers for certain tasks that demand high flexibility and rapid adaption for new product designs. Several solutions have been proposed over the years to create highly flexible automation systems that automatically handles rapid adaption for new products. A concept called Plug & Produce aims at creating a system where resources and parts can be added in minutes rather than days in dedicated systems. One promising solution for implementing Plug & Produce is the distributed approach called multi-agent systems, where each resource and part get its own controller that communicates with each other to reach manufacturing goals. The idea is that the system automatically handles the adaption for new products. However, still today the use of such systems is extremely limited in the industry. One reason is the lack of mature multi-agent systems that are easy to use and that hides the complexity of the underlying agent system from the users. This is a huge problem since these systems tend to be more complex than traditional approaches. Thus, this thesis focuses on simplifying the use of multi-agent systems by proposing various methods for bringing the multi-agent technology for Plug & Produce closer to the industry.
  •  
5.
  • Bennulf, Mattias, 1992-, et al. (författare)
  • Goal-Oriented Process Plans in a Multiagent System for Plug & Produce
  • 2021
  • Ingår i: IEEE Transactions on Industrial Informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 1941-0050 .- 1551-3203. ; 17:4, s. 2411-2421
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents a framework for Plug & Produce that makes it possible to use configurations rather than programming to adapt a manufacturing system for new resources and parts. This is solved by defining skills on resources, and goals for parts. To reach these goals, process plans are defined with a sequence of skills to be utilized without specifying specific resources. This makes it possible to separate the physical world from the process plans. When a process plan requires a skill, e.g., grip with a gripper resource, then that skill may require further skills, e.g., move with a robot resource. This creates a tree of connected resources that are not defined in the process plan. Physical and logical compatibility between resources in this tree is checked by comparing several parameters defined on the resources and the part. This article presents an algorithm together with a multiagent system framework that handles the search and matching required for selecting the correct resources.
  •  
6.
  • Eriksson, Kristina M., 1976-, et al. (författare)
  • Conceptual framework of scheduling applying discrete event simulation as an environment for deep reinforcement learning
  • 2022
  • Ingår i: Procedia CIRP. - : Elsevier BV. - 2212-8271 .- 2212-8271. ; 107, s. 955-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased environmental awareness is driving the manufacturing industry towards novel ways of energy reduction to become sustainable yet stay competitive. Climate and enviromental challenges put high priority on incorporating aspects of sustainability into both strategic and operational levels, such as production scheduling, in the manufacturing industry. Considering energy as a parameter when planning makes an already existing highly complex task of production scheduling even more multifaceted. The focus in this study is on inverse scheduling, defined as the problem of finding the number of jobs and duration times to meet a fixed input capacity. The purpose of this study was to investigate how scheduling can be formulated, within the environment of discrete event simulation coupled with reinforcement learning, to meet production demands while simultaneously minimize makespan and reduce energy. The study applied the method of modeling a production robot cell with its uncertainties, using discrete event simulation combined with deep reinforcement learning and trained agents. The researched scheduling approach derived solutions that take into consideration the performance measures of energy use. The method was applied and tested in a simulation environment with data from a real robot production cell. The study revealed opportunities for novel approaches of studying and reducing energy in the manufacturing industry. Results demonstrated a move towards a more holistic approach for production scheduling, which includes energy usage, that can aid decision-making and facilitate increased sustainability in production. We propose a conceptual framework for scheduling for minimizing energy use applying discrete event simulation as an environment for deep reinforcement learning.
  •  
7.
  • Glorieux, Emile, 1989-, et al. (författare)
  • Energy model for motion planning of 2D-belt press line tending robots
  • 2020
  • Ingår i: International Journal of Manufacturing Research. - : Inderscience Enterprises Ltd.. - 1750-0591. ; 15:1, s. 52-72
  • Tidskriftsartikel (refereegranskat)abstract
    • A current trend in production is to reduce energy consumption where possible not only to lower the cost but also to be a more energy efficient entity. This paper presents an energy model to estimate the electrical energy consumption of 2D-belt robots used for material handling in multi-stage sheet metal press lines. An estimation of the energy consumption is computed by the proposed energy model based on the robot components’ specifications, the robot path and trajectory. The proposed model can predict the energy consumption offline by simulation, and thus, before installation, avoiding the need for physical experiments. It is demonstrated that it can be used for predicting potential energy reductions achieved by optimising the motion planning. Additionally, it is also shown how to investigate the energy saving achieved by using mechanical brakes when the robot is idle. This effectively illustrates the usefulness of the proposed energy model. © 2020 Inderscience Enterprises Ltd.
  •  
8.
  • Khabbazi, Mahmood Reza, et al. (författare)
  • Model-based Plug & Produce in Assembly Automation
  • 2023
  • Ingår i: 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA). - : IEEE. - 9798350339918 - 9798350339901 - 9798350339925
  • Konferensbidrag (refereegranskat)abstract
    • Manual assembly systems are featured with high flexibility but with the risk of lower quality, higher cycle time, inefficient resource employment, and affecting sustainability goals in comparison to fully automated ones. Conventional automated assembly is challenged by the desired level of flexibility when compared to what automation through Plug & Produce system represents. Plug and Produce, during the last few decades aimed at addressing highly flexible automation systems handling rapid changes and adaptations as one dominant solution. Multi-agent System (MAS) as a tool to handle different areas of manufacturing control systems can be used in Plug & Produce representing every physical control entity (e.g., parts, resources) as agents. This article aims to describe a model-based configurable multi-agent design in Plug and Produce system together with a prototype implementation of the actual automated assembly use case of a kitting operation highlighting flexibility and reconfigurability and the model functionality. A model-based approach with a few models using UML standards describes the structure and behavior of the system. Model instantiation is introduced and followed by real prototype use case implementation. The use case study of advanced automated kitting operation in the assembly automation domain has been selected. Agent-based operation control systems have been applied during the assembly process. The evaluation was accomplished by testing several scenarios on Plug & Produce for kitting operation. To conclude, several desirable functionality features of the framework during the demonstration such as rapid instantiation and adaptation, and in particular, the flexibility features have been examined and evaluated with several failure-handling testing scenarios. © 2023 IEEE.
  •  
9.
  • Massouh, Bassam, et al. (författare)
  • A Framework for Hazard Identification of a Collaborative Plug&Produce System
  • 2022
  • Ingår i: Communications in Computer and Information Science. - Cham : Springer Science+Business Media B.V.. - 1865-0929 .- 1865-0937. ; 1616 CCIS, s. 144-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Plug&Produce systems accept reconfiguration and have the attribute of physical and logical flexibility. To implement the Plug&Produce system in a manufacturing plant, there is a need to assure that the system is safe. The process of risk assessment provides information that is used to implement the proper safety measures to ensure human and machine safety. An important step in the risk assessment process is hazard identification. Hazard identification of Plug&Produce system is unique as the hazard identification method provided in the safety standards do not consider system flexibility. In this paper, a framework for hazard identification of a collaborative Plug&Produce system is presented. A study case that includes a collaborative Plug&Produce system is presented and the framework is applied to identify the system’s hazards. Also, the generalisation of the framework application is discussed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
  •  
10.
  • Massouh, Bassam, et al. (författare)
  • Online Hazard Detection in Reconfigurable Plug & Produce Systems
  • 2024
  • Ingår i: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems.. - : Springer Nature. - 9783031382406 - 9783031382413 ; , s. 889-897
  • Konferensbidrag (refereegranskat)abstract
    • Plug & Produce is a modern automation concept in smart manufacturing for modular, quick, and easy reconfigurable production. The system’s flexibility allows for the configuration of production with abstraction, meaning that the production resources participating in a specific production plan are only known in the online phase. The safety assurance process of such a system is complex and challenging. This work aims to assist the safety assurance when utilizing a highly flexible Plug & Produce concept that accepts instant logical and physical reconfiguration. In this work, we propose a concept for online hazard identification of Plug & Produce systems, the proposed concept, allows for the detection of hazards in the online phase and assists the safety assurance as it provides the hazard list of all possible executable alternatives of the abstract goals automatically. Further, it combines the safety-related information with the control logic allowing for safe planning of operations. The concept was validated with a manufacturing scenario that demonstrates the effectiveness of the proposed concept.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy