SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Das Oisik) srt2:(2019)"

Sökning: WFRF:(Das Oisik) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Das, Oisik, et al. (författare)
  • An all-gluten biocomposite : Comparisons with carbon black and pine char composites
  • 2019
  • Ingår i: Composites. Part A, Applied science and manufacturing. - : Elsevier. - 1359-835X .- 1878-5840. ; 120, s. 42-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Three different charcoals (gluten char, pine bark char and carbon black) were used to rectify certain property disadvantages of wheat gluten plastic. Pyrolysis process of gluten was investigated by analysing the compounds released at different stages. Nanoindentation tests revealed that the gluten char had the highest hardness (ca. 0.5 GPa) and modulus (7.8 GPa) followed by pine bark char and carbon black. The addition of chars to gluten enhanced the indenter-modulus significantly. Among all the charcoals, gluten char was found to impart the best mechanical and water resistant properties. The addition of only 6 wt% gluten char to the protein caused a substantial reduction in water uptake (by 38%) and increase of indenter-modulus (by 1525%). It was shown that it is possible to obtain protein biocomposites where both the filler and the matrix are naturally sourced from the same material, in this case, yielding an all-gluten derived biocomposite.
  •  
2.
  • Das, Oisik, et al. (författare)
  • Nanoindentation and flammability characterisation of five rice husk biomasses for biocomposites applications
  • 2019
  • Ingår i: Composites. Part A, Applied science and manufacturing. - : ELSEVIER SCI LTD. - 1359-835X .- 1878-5840. ; 125
  • Tidskriftsartikel (refereegranskat)abstract
    • Five different rice husks (RHs) having different geographical origins were characterised for their mechanical and fire reaction properties using nanoindentation and cone calorimetry, respectively. Analyses relating to ash and extractives contents, density and morphologies were also performed. The RHs had statistically similar extractives content, nanoindentation properties and peak heat release rates (PHRRs). The polypropylene-based composites made from these RHs also had insignificant differences in their tensile moduli, elongation and PHRR values. The RH inclusion conserved the tensile/flexural strengths while enhancing the moduli of the composites, as compared to the neat polypropylene. The material characteristics being ubiquitous amongst the different RH types enable the creation of biocomposites with foreseeable performance properties. Moreover, the individual nanoindentation and fire reaction properties of the RI-Is allowed the presaging of the bulk biocomposites' properties using theoretical models. Good agreements between predicted and experimental moduli/PHRRs were achieved using rule of mixtures and Halpi-Pegano models.
  •  
3.
  • Das, Oisik, et al. (författare)
  • The development of fire and microbe resistant sustainable gluten plastics
  • 2019
  • Ingår i: Journal of Cleaner Production. - : ELSEVIER SCI LTD. - 0959-6526 .- 1879-1786. ; 222, s. 163-173
  • Tidskriftsartikel (refereegranskat)abstract
    • This study shows the improvement of fire and microbe resistance of sustainable (protein) plastics (i.e. wheat gluten, WG), by using triethylene glycol diamine and dialdehyde. In addition, an anti-microbial agent (lanosol) was also used separately and in combination with the diamine/dialdehyde. The network formed by the diamine and dialdehyde, during the production of compression-moulded plates, resulted in high fire performance index, large amount of char and low thermal decomposition rate. The best fire resistance was obtained by the combination of the dialdehyde and lanosol, which also yielded a char with the intact surface. The peak-heat-release-rate of this material was only 38% of that of the pure gluten material. This material also showed anti-bacterial (E. coli) properties. However, the diamine was more effective than the combination of dialdehyde/lanosol. Gluten materials with diamine resisted mould growth during a 22 days test at a relative humidity of 100%. The gluten material with the lanosol applied to the sample surface resisted mould growth during a three-week test at both ambient temperature and 37 degrees C. Despite the relatively high contents of the difunctional reagents used (15 wt%), leading to an increased stiffness in most cases, only the network formed with glyoxal resulted in a decrease in water uptake as compared to the pure gluten material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy